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We study the dynamics of a ring of unidirectionally coupled autonomous Duffing oscillators. Start-
ing from a situation where the individual oscillator without coupling has only trivial equilibrium
dynamics, the coupling induces complicated transitions to periodic, quasiperiodic, chaotic, and
hyperchaotic behavior. We study these transitions in detail for small and large numbers of oscilla-
tors. Particular attention is paid to the role of unstable periodic solutions for the appearance of
chaotic rotating waves, spatiotemporal structures, and the Eckhaus effect for a large number of
oscillators. Our analytical and numerical results are confirmed by a simple experiment based on the
electronic implementation of coupled Duffing oscillators. © 2010 American Institute of Physics.
�doi:10.1063/1.3293176�

Theoretical and experimental investigations have shown
that coupled systems, in particular large coupled systems,
have a great potential in a large amount of application
areas ranging from physics and engineering to economy
and biology. In this paper we show that a ring of unidi-
rectionally coupled Duffing oscillators demonstrates a
complex dynamical behavior. We observe periodic, qua-
siperiodic, chaotic, and hyperchaotic attractors. In the
chaotic regime, chaotic rotating waves are identified. For
a large number of oscillators we observe the emergence
of spatiotemporal structures and the appearance of the
Eckhaus scenario. We partially verify our results in a
simple electronic experiment.

I. INTRODUCTION

Recently, one can observe a growing interest in the stud-
ies of the networks of coupled oscillators.1 The knowledge of
the dynamical behavior of such systems can contribute to the
understanding of fundamental dynamical features of physi-
cal, biological, engineering, or economical coupled
systems.2,3 The most important question is how the specific
properties of the individual behavior and the coupling archi-
tecture can give rise to different types of collective behavior.4

The other problem, which is discussed here, is connected
with the structure of the attractors in higher dimensional
phase space and, in particular, with the occurrence of the
hyperchaotic attractors. If a map is at least two dimensional
or a flow is at least four dimensional, its evolution can take
place on a hyperchaotic attractor. Such attractors are charac-
terized by at least two positive Lyapunov exponents for typi-
cal trajectories on them. The first example of such a system
with hyperchaotic attractor was presented by Rössler5 for a
chemical reaction model. Later, hyperchaotic attractors have

been found in electronic circuits and other chemical
reactions.6,7 In the works8,9 it was shown that by a weakly
coupling of N chaotic systems it is possible to obtain a hy-
perchaotic attractor with N positive Lyapunov exponents.
The transition from chaos to hyperchaos has been studied in
Refs. 10–12. It was shown that at this transition the attrac-
tor’s dimension and the second Lyapunov exponent grow
continuously. The role of the unstable periodic solutions
�PSs� in this transition has been discussed in Refs. 13–15.

In this paper we present a mechanism that leads to a
transition from periodic to chaotic and hyperchaotic behavior
in a ring of unidirectionally coupled autonomous Duffing
oscillators only by increasing the coupling strength. This is
done by analyzing the destabilization of the steady state, nu-
merical simulation of bifurcating attractors, and calculation
of the full spectrum of Lyapunov exponents. We give evi-
dence that the coupling symmetry of the considered system
implies a phase relation that is preserved for chaotic behavior
and creates chaotic rotating waves.16–18 For a large number
of oscillators we observe the coexistence of several PS
branches with a stability boundary that can be interpreted in
terms of the classical Eckhaus scenario as a sideband insta-
bility within a family of solutions with different periods in
space and time.19–25 We calculate the symmetric unstable pe-
riodic orbits �UPOs�, identify their role in the skeletons of
the chaotic and hyperchaotic attractors, and point out their
importance for the development of spatiotemporal structures.
Finally, we report on the electronic implementation of a ring
of three Duffing oscillators and show experimental results
that partially confirm the existence of the chaotic rotating
waves.

This paper is organized as follows. In Sec. II we intro-
duce our system. The study of the stability of the equilibrium
state of a ring of N oscillators is presented in Sec. III. Section
IV describes the dynamics of a ring of three coupled oscil-
lators. In this section we present both numerical and experi-a�Electronic mail: przemyslaw.perlikowski@p.lodz.pl.
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mental results. In Sec. IV we also study the appearance of
chaotic rotating waves. The dynamics of a large ring of 400
oscillators is investigated in Sec. V where we observe the
Eckhaus effect and the creation of complex spatiotemporal
structures. Finally, we give conclusions in Sec. VI.

II. THE MODEL

We consider the ring of unidirectionally coupled oscilla-
tors shown in Fig. 1. As a node system we take the autono-
mous Duffing oscillator described by the following second
order ordinary differential equation �ODE�,

v̈ + dv̇ + av + v3 = 0, �1�

where a and d are positive constants. In all numerical ex-
amples we use the fixed the parameter values a=0.1 and
d=0.3. The system �1� is a single-well Duffing oscillator
which has a single equilibrium point at v= v̇=0. Due to the
presence of damping �d�0� in the oscillator this equilibrium
is an attractor for all initial conditions.

Introducing the new coordinates x=v, y= v̇ in Eq. �1� the
dynamics of the ring of oscillators shown in Fig. 1 can be
described by the following system:

ẋj = yj ,

�2�
ẏ j = − dyj − axj − xj

3 + k�xj−1 − xj� ,

where k is a linear coupling coefficient and j=1, . . . ,N is
considered modulo N. This type of unidirectional coupling
appears in different applications, e.g., in reactive flows,26,27

motions of active Brownian particles,28 etc. It should be
mentioned here that typically the studies of the dynamics of
the rings of coupled oscillators are concentrated on the pos-
sibility of the oscillator synchronization or the appearance of
clusters of synchronized attractors.29–35 Considered study
differs in the way that all observed phenomena here appear
in the case when all oscillators in the ring are unsynchro-
nized. The synchronizations of oscillators in the ring �Eq.
�2�� reduce its dynamics to the steady state.

More generally Eq. �2� with rotation-symmetric structure
of the coupling can be rewritten in the following form:

ż j = Azj + B�zj� + Hzj−1, �3�

where A is the Jacobian of the node system, B�zj� represents
the nonlinear terms, and the matrix H takes care for the
coupling to the �j−1�th neighbor. For the system �2� we
obtain

A = � 0 1

− �a + k� d
�, B�zj� = � 0 0

− xj
3 0

�, H = �0 0

k 0
� ,

�4�

where zj = �xj ,yj�T.
The entire coupled system can be described in the matrix

form

ż = �I � A�z + B�z� + �G � H�z , �5�

where z= �z1 , . . . ,zN�T, I is the identity N�N matrix, and
B�z�=diag�B�z1� , . . . ,B�zN�� are nonlinearities. G is the
N�N connectivity matrix representing the topology of con-
nections between the array nodes, and for the unidirectional
ring structure we have

G = �
0 0 0 . . . 1

1 0 0 . . . 0

. . . . .

0 . . . 1 0 0

0 0 . . . 1 0
� . �6�

Equation �5� has a symmetric equilibrium point
z= �0, . . . ,0�T.

III. STABILITY OF THE EQUILIBRIUM

In order to investigate the stability of the symmetric
equilibrium point of the ring we linearize Eq. �5� in the
neighborhood of z= �0, . . . ,0�T. The resulting variational
equation has the following form:

�ż = �I � A + G � H��z , �7�

where �z= ��z1 , . . . ,�zN�T. After block diagonalization of the
variational equation �7�, there appear N independent
systems25,36

�̇ j = �A + � jH�� j, j = 1, . . . ,N , �8�

where � j are variational coordinates and � j are the eigenval-
ues of the connectivity matrix G, which can be calculated
here easily as

� j = ei2�j/N, �9�

where j=1, . . . ,N. In this way, we reduce the stability prob-
lem for Eq. �7� to a family of characteristic equations

���, j� ª det��I − A − � jH� = 0, j = 1, . . . ,N �10�

that determine the stability of different spatial patterns. When
the number of oscillators N is large, we can replace the dis-
crete family of network eigenvalues � j by the continuous
family ei	, 	� �0,2�� �cf. Ref. 25� and obtain the equation

xN

x1

x2

xj-1

xj

x
j+1

FIG. 1. Ring of unidirectionally coupled oscillators.
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���,	� ª det��I − A − ei	H� = 0 �11�

for the location of the eigenvalues for stationary state of
system �7�. For any number of coupled systems N the eigen-
values � j are located on closed curves �see Figs. 2�a�–2�c��
given by solutions ��	�, 0
	
2� of Eq. �11�. The con-
tinuous curves ��	� describe the spectrum for large N and
are called asymptotic continuous spectrum �ACS�.25 Indeed,
for increasing N one can observe that ACS curves are more
and more densely filled by eigenvalues.

The exact values of eigenvalues can be found from Eq.
�10� as

�1,2�j� = −
d

2
�	
d

2
�2

− a − k�1 − ei2�j/N� , �12�

and the corresponding formula for the ACS curves is

�1,2�	� = −
d

2
�	
d

2
�2

− a − k�1 − ei	� . �13�

The eigenvalues given by Eq. �12� determine the stability
properties of the equilibrium for system �2�. Figure 2 illus-
trates the eigenvalues and their dependence on the coupling
parameter k. For increasing k, the stationary state loses its
stability in a Hopf bifurcation �HB�. With an increasing num-
ber N of oscillators, the critical coupling strength �black ver-
tical line in the right column� decreases. In the limit of
N→� the critical value can be calculated as the touching

point of the ACS with the imaginary axis. The corresponding
value of 	 determines the spatial pattern of the destabilizing
mode. Note that there are further HBs, leading to mul-
tiple UPOs. Their number NHB is given for even N by
NHB=N /2−1 and for odd N by NHB= �N−1� /2. We will
demonstrate later that the primary branch of periodic orbits is
stable, and the branches with frequency and spatial wave
number close to the primary branch can also acquire stability,
leading to scenario of multistability of periodic orbits. We
will analyze this phenomenon in more detail in Sec. V.

IV. NUMERICAL AND EXPERIMENTAL INVESTIGATION
FOR N=3

A. Destabilization route

In this section, we describe the destabilization mecha-
nisms in the smallest interesting case of N=3 Duffing oscil-
lators. Indeed, for N=2, the system has a decreasing energy
for d�0 and there is no destabilization induced by the cou-
pling. We will first present our theoretical results and then
compare them with an experiment on electrical circuits.

The first destabilizing HB in the system occurs at
k=0.238 and creates a stable PS �the bifurcation is supercriti-
cal�. Further increasing coupling strength k leads to the ap-
pearance of quasiperiodic, chaotic, and hyperchaotic dynam-
ics one after the other. Figure 4 illustrates different observed
dynamical regimes and Fig. 3 gives the corresponding bifur-
cation diagram with respect to the control parameter k. Fig-
ure 3�a� shows the bifurcation diagram for an arbitrarily cho-
sen variable xj. The corresponding plots of the four largest
Lyapunov exponents37,38 are presented in Fig. 3�b�. Figures
4�a�–4�f� show Poincare maps for the different existing types
of attractors.

The bifurcation diagram shows that the PS �see Fig.
4�a�� appearing after the destabilization of the equilibrium
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FIG. 2. Left column: eigenvalues of the steady state and ACS in complex
plane for three different values of k indicated by vertical lines on the right.
Right column: real parts of eigenvalues vs coupling coefficient k. Number of
oscillators: ��a� and �b�� N=3; ��c� and �d�� N=7; ��e� and �f�� N=30.

FIG. 3. �Color online� �a� Four largest Lyapunov exponents and �b� bifur-
cation diagram for the array of three coupled Duffing oscillators vs coupling
coefficient k. Bifurcations occur for the following parameter values: HB
�k=0.238�, NS bifurcation �k=0.373�, PD bifurcations of a torus �k=0.73
and k=1.4�, transition to chaos �chaos� �k=1.79�, and appearance of the
second positive Lyapunov exponent �hyperchaos� �k=1.9�. Parameters of
the system: d=0.3 and a=0.1.
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via HB is stable up to the Neimark–Sacker �NS� bifurcation
at k=0.373. Then it becomes unstable and stable a quasiperi-
odic solution 4�b�� appears, which is characterized by two
vanishing largest Lyapunov exponents. When the coupling
strength reaches the value k=0.73 one can observe a period-
doubling �PD� bifurcation of the torus �Fig. 4�c�� followed
by an inverse PD �Fig. 4�d�� at k=1.4. The doubling of torus
periodicity is illustrated with the plots of time series in Fig.
4�h�, where the doubling of the period is explicitly visible
�compare Figs. 4�g� and 4�i��. For k=1.79 the largest
Lyapunov exponent becomes positive and the transition to
chaos via torus breakdown takes place �Fig. 4�e��. Finally,
for k�1.9 the second largest Lyapunov exponent becomes
positive and a hyperchaotic attractor shows up for larger cou-
pling. The Poincare map of the hyperchaotic attractor is
shown in Fig. 4�f�.

In order to test experimentally our numerical results, we
have performed a simple electrical experiment.39–41 The elec-
trical scheme of three coupled Duffing oscillators is shown in
Fig. 5. Each oscillator is shown in a black frame and is built
using two capacitors, six resistors, and two multiplicators
AD-633JN,42 which introduce nonlinearity. The characteris-
tics of multiplicators are given by the equation

W =
1

Vc
�X1 − X2��Y1 − Y2� + Z ,

where X1, X2, Y1, and Y2 are input signals, W is the output
signal, Vc=10 V, and Z is a correction to the output signal.
We measured the voltage at points V1−3 and �V1−3, which are
related to x1−3 and y1−3, receptively. In order to set the
initial conditions, we added an external impulse to the third
system. The coupling is introduced through resistors R and
potentiometer R8, which is a controlling device. In our ex-
periment we used out of shelf elements: C1=C2=10 F
R1=1 M�, R2=333 �, R3=10 M�, R4=R7=10 k�,
R5=R6=100 k�, R8= � �0 � ,44 k��, R=10 k�, and the
accuracy is �1%.

The dynamics of the obtained electrical system is
described by Eq. �2� where the dimensionless parameters
are in the following relation with the parameters of the
electrical circuit: a=100R4 /R5, d=1 /C1R1�0, k=R2 /R8,
x1−3=V1−3 /v0, y1−3=�V1−3 /v0�0, �0

2=1 /100C1C2R4R7, and
v0=1 V is a scaling voltage.43 The unidirectional coupling is
ensured by operating amplifiers. The comparison of numeri-
cal simulations to experimental data is demonstrated in Figs.
6�a�–6�l�, where the numerically generated phase portraits
��d� and �e�, �j�–�l�� and their experimental counterparts
��a�–�c�, �g�–�i�� are shown. Each pair of phase portraits is
related to the corresponding Poincare map and time diagram
shown in Figs. 4�a�–4�f�, i.e., they have been obtained for
corresponding values of the coupling parameter. A compari-
son of the results shows a high qualitative agreement be-
tween the simulations and the experiment. Slight differences
are visible only in the shape but not in the type of corre-
sponding attractors.

B. Periodic, quasiperiodic, and chaotic rotating
waves

In this section we study the effects of the symmetry in
the coupling structure on the dynamics. The invariance with
respect to spatial rotation �index shift� of the system �2� im-
plies the appearance of the solutions with prescribed spa-
tiotemporal symmetry.44–46 Such solutions in our case are
time-periodic rotating waves, where all oscillators move
along the same periodic orbit but with a fixed phase shift
between neighboring nodes in the ring. One can show25 that
all PSs, which appear after the HBs of the symmetric equi-
librium of Eq. �2� �see Sec. III�, possess this symmetry. In
this section we demonstrate that these symmetry properties
play an important role even for quasiperiodic and chaotic
attractors appearing after the destabilization of the rotating
waves. In particular, one can observe a phase-shifted chaotic
or quasiperiodic synchronization.
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FIG. 4. Three coupled Duffing oscillators: ��a�–�f�� Poincare sections and
��g�–�i�� time traces for the variable x3; �a� periodic motion for k=0.3, ��b�
and �g�� quasiperiodic motion for k=0.67, ��c� and �h�� torus after the PD for
k=0.77, ��d� and �i�� torus after the inverse PD for k=1.77, �e� chaotic
attractor for k=1.8, and �f� hyperchaos for k=2.1. Parameters of the system:
d=0.3 and a=0.1.
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Note that a complete synchronization,47 i.e., the full co-
incidence of phases and amplitudes of all coupled oscillators,
would lead in our case to vanishing coupling terms and con-
sequently to the oscillation “death” due to the internal damp-
ing �coefficient d�0�. On the other hand, in the case of
unidirectionally coupled systems one can expect phase48,49 or
generalized50,51 synchronization as well as the appearance of
spatiotemporal structures.31,52,53 In order to investigate the
degree of the generalized synchronization, we decided to use
the method based on computation of the localized sets.54 The
main idea of this method consists of the position detection of
all oscillators in the time moments when the trajectory of
some reference system �e.g., the state �x1 , ẋ1� of the first
oscillator� is close to some point chosen arbitrary on the
attractor. To this end, we define a small box D1 in the plane
�x1 , ẋ1�. Then the set D2 consists of all points �x2�t� , ẋ2�t��
such that �x1�t� , ẋ1�t���D1, i.e., determining the position of
system �2� at the time moments when the first system is in
the box D1. Similarly the box D3 is constructed. If the sets

D2 and D3 for the second and the third systems are localized,
one may speak about the existence of a generalized synchro-
nization between the systems.

The corresponding localized sets for different attractors
are shown in Fig. 7. For the periodic case �Fig. 7�a�� the
reference localized set D1 �black� generates two correspond-
ing localized sets D2 �red� and D3 �green�, which are shifted
by one third of the period along the same orbit. This fact
indicates the presence of the periodic rotating wave. The
same procedure is used now for further dynamical states of
the coupled system. Both for quasiperiodic �Fig. 7�b�� and
chaotic �Fig. 7�c�� attractors the corresponding sets are rela-
tively well localized. The sets on the torus have approxi-
mately the same size as the reference D1 �black� box. In the
chaotic regime, the corresponding sets are visibly larger than
the reference set.

In addition, in the case of torus one reference set D1

generates two pairs D2� ,D2� and D3� ,D3� of localized sets, and
in the case of chaotic attractor it generates two groups of four

FIG. 5. Electronic implementation of three unidirectionally coupled autonomous Duffing oscillators. More details are given in the text.
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localized sets. For the parameter k values slightly larger than
the NS bifurcation point �NS in Fig. 3�, the sets D3� and D3� as
well as D2� and D2� approach each other and merge at the
bifurcation point NS, where the periodic rotating wave ap-
pears. Therefore, the NS bifurcation can be regarded as a soft
symmetry breaking bifurcation. At this bifurcation, with in-
creasing of the control parameter k, the periodic rotating
wave loses its stability and the bifurcating stable torus has no
longer an exact spatiotemporal symmetry. As a result the sets
D2 and D3 split into two pairs of localized sets D2� ,D2� and
D3� ,D3�.

The appearance of multiple localized sets can be also
understood as follows. The reference box D1 is in fact a
projection of an unbounded cylindrical set in the six-
dimensional phase space of the coupled system
�x1 , ẋ1 ,x2 , ẋ2 ,x3 , ẋ3� that intersects the attractor in the other
localized sets. Hence, it is natural that for the torus we obtain
two connected components in this cross section. In Fig. 7�d�
the localized set for a hyperchaotic attractor is shown. It is
clearly visible that the points of the corresponding set are
more uniformly distributed in large area on the attractor,
which indicates a higher degree of desynchronization.

In addition, the spatiotemporal symmetry of the system
�2� implies that the periodic, quasiperiodic, and chaotic ro-
tating waves appear.16–18,55–57 Indeed, the quasiperiodic and
chaotic attractors of our system possess the approximate spa-
tiotemporal translation symmetry, as it is shown in Figs. 8
and 9. Figure 8 shows that the orbits are similar but time
shifted. In Fig. 9 we show the cross-correlation coefficient

r =
��x1�t� − x̄1��x2�t − �� − x̄2�

x1�t� − x̄1x2�t� − x̄2
,

where x̄j is the mean value of the amplitude along the trajec-
tory. The coefficient r is bounded in the range ��1,1�, where

�1 and 1 indicate in-phase and antiphase relation and 0 cor-
responds to lack of correlation, as it is easy to see that the
cross-correlation coefficient stays high for periodic, quasip-
eriodic, and chaotic cases and decays to zero in the case of
the hyperchaotic attractor.

The electrical experiment agrees with our numerical
findings. In Fig. 8 experimental time traces from the array of
electrical circuits �Fig. 5� are presented for all three cases:
periodic �Fig. 8�a�–8�c��, quasiperiodic �Fig. 8�d�–8�f��, and
chaotic �Fig. 8�g�–8�i�� rotating waves. It is easy to observe
that the time-shift symmetry between time traces of subse-
quent oscillators approximately persists in all three cases
mentioned above.

FIG. 7. �Color� Localized sets with attractor in background for the array of
three coupled oscillators. Parameters: �a� k=0.3, �b� k=0.5, �c� k=1.8, and
�d� k=2.1. Other parameters: a=0.1 and d=0.3.

FIG. 6. �Color online� ��a�–�c� and �g�–�i�� Comparison of experimental and ��d�–�f� and �j�–�l�� numerical results. Phase portraits are shown in projection onto
the plane �x3 ,y3�. ��a� and �d�� stable equilibrium, ��b� and �e�� PS, ��c� and �f�� quasi-PS or two-dimensional torus, ��g� and �j�� quasi-PS after the PD,
��h� and �k�� chaotic attractor, and ��i� and �l�� hyperchaotic attractor.
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V. LARGE NETWORK

The number of nodes plays an important role for the
development of complex behavior in the networks of
coupled oscillators, see, e.g., Ref. 58. In this section, we
investigate the dynamics of a large network of unidirection-
ally coupled Duffing oscillators �2� with N=400. The choice
of N is motivated from one side by numerical limitations
�path following of a large system� and from another side by
the fact that this is about the value where some important
spatiotemporal features like Eckhaus phenomenon become
visible. In Fig. 10 we show the bifurcation diagram versus
coupling coefficient k. The transition to chaotic behavior
takes place for a much lower value of the coupling coeffi-
cient �k=0.1435� than in the case of three coupled oscilla-
tors, but also one can observe the coexistence of several

stable PSs, and the coexistence of stable PSs and chaos �see
Fig. 11�.

As it was mentioned in Sec. III, in a ring of N=400
coupled systems one can observe �N−1� /2 HBs of the sym-
metric equilibrium. Each bifurcation leads to the appearance
of a branch of PSs and most of the branches are unstable.
The increase in the number of unstable PS indicates already
that one should expect here more complex dynamics as the
coupling parameter increases. The Hopf curve, on which PS
appears, can be obtained from the condition

i� = −
d

2
+	
d

2
�2

− a − k�1 − ei	� , �14�

where the real part of eigenvalues �13� vanishes at HB.
Equation �14� can be solved with respect to the coupling
parameter k and the Hopf frequency �,
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FIG. 8. �Color� Comparison of time traces of different oscillators �in rows�
in the ring of three electronic circuits shown in Fig. 5: ��a�–�c�� periodic
�k=0.3�, ��d�–�f�� quasi-periodic �k=0.67�, and ��g�–�i�� chaotic �k=1.8� ro-
tating waves. Other parameters: a=0.1 and d=0.3.

FIG. 9. Typical behavior of correlation coefficient for four types of attrac-
tors: Periodic �k=0.3�, quasiperiodic �k=0.5�, chaotic �k=1.85�, and hyper-
chaotic �k=2.1�.

FIG. 10. �Color online� Bifurcation diagram for 400 unidirectionally
coupled Duffing oscillators vs coupling coefficient k. Parameters of the sys-
tem: a=0.1 and d=0.3.
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k�	� =
��	�d
sin 	

,

�15�

��	� =
d��	�

2
+	
d��	�

2
�2

+ a ,

where ��	�= �1−cos 	� /sin 	 and 	� �0,2�� is the param-
eter along the Hopf curve. We take into account only positive
solutions with k�	��0. The Hopf curve is shown in Fig. 11
as blue line, from which the branches of PS emerge. Note
that the period of the emerging PS on the Hopf curve is
T�	�=2� /��	�.

In Fig. 11�a� we plot the period T along the branches of
PS versus coupling coefficient k. All shown solutions are
rotating waves. The branches have been calculated numeri-
cally by path following method using the software package
AUTO.59 Due to numerical limitations we calculate only the
12 PS branches closest to the stable region. In Fig. 11�d� the
HB curve is shown in a wide range of k, while in other plots
�Figs. 11�a� and 11�c�� only a small part is shown. Stable and
unstable PSs along the branches are shown by black and gray
lines, respectively. In Fig. 11�c� we show an enlargement of
the left part of Fig. 11�a�. In addition to the numerically
computed branches of PS �gray lines�, we show schemati-
cally also other branches, which appear from the HB of the
symmetric equilibrium �gray dashed lines�. One can observe
here the occurrence of the Eckhaus scenario,19,24,25 i.e., the
emergence of a region of stable PS that covers a certain
range of frequencies and spatial wave numbers in the neigh-
borhood of the primary stable branch, emerging from the
primary HB. Except for the primary branch, the PS branches
emerge unstable at the HB. Then the branches closest to the
primary branch become stable in a cascade of NS bifurca-
tions. Note that here, the stability region is rather narrow and
some branches are leaving the stability region after passing
through a further NS bifurcation. The Eckhaus curve, which
encloses the stable region, is shown in green and does not

depend on N. Figure 11�b� shows the same PS branches as in
Figs. 11�a� and 11�c�, displaying the maximum amplitude of
oscillation xmax versus the coupling coefficient k.66

An important property of the Eckhaus stability region is
its independence of the number of oscillators25 in the net-
work. With an increasing number of oscillators, the PS
branches become more dense, thus filling more and more
densely the Eckhaus stability region. In our example of Duf-
fing oscillators this region is rather small and therefore mul-
tiple coexistence can be observed only for large N.

Let us investigate now in more detail the stability along
the first branch of PS. Just after the supercritical HB, the
branch is stable until it escapes the Eckhaus region with in-
creasing of k. The stability of a PS is determined by the
spectrum of Floquet multipliers, see Fig. 12. The PS is stable
when all Floquet multipliers are inside the unit circle, other-
wise PS is unstable. As in the case of equilibria, one can
observe that the spectrum is again aligned along curves of
asymptotic continuous Floquet spectrum. The main bifurca-
tions in this case will be NS bifurcations, i.e., when a com-
plex conjugate pair of Floquet multipliers �Im����0� is
crossing the unit circle. Examples of stable spectra are shown
in Figs. 12�a� and 12�b� for k=0.14 and k=0.148, respec-

FIG. 12. Floquet multipliers �black dots� of the PS on the first branch �see
Fig. 11�a�� for coupling coefficients �a� k=0.140, �b� k=0.148, and ��c� and
�d�� k=0.171. The unit circle is shown in gray. The other parameters are
d=0.3 and a=0.1.
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FIG. 13. �Color� Spatiotemporal plots for 400 coupled Duffing oscillators.
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tively. The unstable spectrum for k=0.171 is shown in Fig.
12�c� and its enlargement in Fig. 12�d�. One can observe that
for k=0.171 the corresponding PS has already multiple un-
stable dimensions.

In Fig. 13 we show some spatiotemporal plots. The os-
cillator number is shown along the horizontal axis and the
time along the horizontal axis. The amplitude of oscillators
xj�t� is shown using a color gradient. For better visibility we
restricted the space to N=200 oscillators. In Fig. 13�a� one
observes a pattern corresponding to a stable periodic rotating
wave. The corresponding initial conditions are taken from
the primary branch of PS with k=0.148. With increasing k,
the PS escapes the Eckhaus stability region and becomes
unstable. The solution shows now the irregular pattern given
in Fig. 13�b� for k=0.171. Although all the rotating waves
are already unstable, an intermittent periodic structure still
exists locally in space and time. The existence of such struc-
tures indicates that the unstable rotating waves become a part
of a new chaotic attractor after destabilization. As a result,
the system visits intermittently and locally in space such un-
stable PS during its evolution along the chaotic attractor.60

This phenomenon can be seen in more detail in Fig. 14
where we show two cross sections of Fig. 13�b�. The first
one shows the time evolution of one fixed oscillator �Figs.
14�a� and 14�b��. The second shows the amplitudes of all
oscillators for some fixed time moment �Figs. 14�c� and
14�d��. We plot the hyperchaotic trajectory �black� and the
unstable PS from the primary branch �gray�. The black dots
in Figs. 14�c� and 14�d� indicate the positions of single os-
cillators. Figure 14�a� shows that the chaotic trajectory fre-
quently comes close to the unstable PS �see also enlargement
in Fig. 14�b��, where the amplitude and the period of the
chaotic trajectory and PS are close. The same scenario can be
observed in the second cross section in Figs. 14�c� and 14�d�.
In Fig. 14�d� it is easy to see the good local correlation
between the spatial profile of the chaotic orbit and of the
unstable PS.

VI. CONCLUSION

We studied the appearance of complex dynamics in a
ring of unidirectionally coupled autonomous Duffing oscilla-
tors. Although the individual uncoupled system has only
trivial dynamics as a globally stable equilibrium, the system
shows with increasing coupling strength a transition to peri-
odic, quasiperiodic, and chaotic behavior. The symmetry in
the coupling structure leads to the appearance of rotating
waves with a fixed phase relation between neighboring os-
cillators, which can be traced also within the region of qua-
siperiodic and chaotic behavior and manifests in the form of
chaotic rotating waves. If the number of oscillators in the
ring is large, the system shows additional interesting phe-
nomena. After destabilization we observed the coexistence of
multiple stable PSs in a band of frequencies and wave num-
bers close to the primary branch of PSs, which can be inter-
preted in terms of the well known Eckhaus scenario. We
identified the symmetric UPOs, which are in the skeletons of
the chaotic attractor and discuss their role in the development
of spatiotemporal structures. Some of our theoretical results
have been confirmed in an experiment with three coupled
Duffing oscillators. We were able to observe experimentally
periodic, quasiperiodic, chaotic, and hyperchaotic signals, as
well as chaotic rotating waves.

In the case of slightly nonidentical oscillators coupled in
the ring39,61,62 one can observe the similar dynamical phe-
nomena. Since the symmetry is of discrete nature, all de-
scribed dynamical phenomena will persist also under suffi-
ciently small symmetry breaking perturbations of the system.
It might only happen that they split into several nonidentical
copies, which are, however, all close to the primary solution
of the system with identical oscillators.

The considered type of coupling is important from prac-
tical point of view, e.g., for secure communication, where
unidirectionally coupled lasers are used.63–65 Our investiga-
tion gives an overview on possible dynamics in such scheme.
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