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Synchronization thresholds of an array of nondiagonally coupled oscillators are investigated. We present
experimental results which show the existence of ragged synchronizability, i.e., the existence of multiple
disconnected synchronization regions in the coupling parameter space. This phenomenon has been observed in
an electronic implementation of an array of nondiagonally coupled van der Pol’s oscillators. Numerical simu-
lations show good agreement with the experimental observations.
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Synchronization �1� has become a well-known and widely
used feature in driven periodic and chaotic oscillators. Over
the last decade the subject of network synchronization has
attracted increasing attention from different fields �1–7�.
Synchronization thresholds and their dependence on various
structural parameters of the network, such as the type and
strength of coupling �2� are of particular interest. The intro-
duction of the master stability function �MSF� �3� allowed
for the establishment of a number of important results �4,5�.

In our previous work �6�, we presented an example of
nondiagonally coupled array of Duffing oscillators, in which
multiple disconnected synchronous regions of coupling
strength occur. The term nondiagonal coupling means that
the network nodes are linked with others via nondiagonal
components of linking �output� function �see Eq. �5��. We
have also observed the appearance or disappearance of such
synchronous windows in coupling parameter space, when the
number of oscillators in the array or topology of connections
between them changes. This phenomenon has been called the
ragged synchronizability �RSA�. The existence of RSA has
been numerically confirmed in �7�.

In this Brief Report we give the experimental evidence of
the existence of RSA. We consider the dynamics of an array
of coupled van der Pol’s �VdP� oscillators which has been
implemented as an electronic circuit. Our numerical studies
are supported by a simple electronic experiment. Our experi-
mental results are in satisfactory agreement with numerical
simulations.

In our experimental and numerical studies, the VdP oscil-
lator

ẋ = z ,

ż = d�1 − x2�z − x + cos���� , �1�

where d and � are constant, has been taken as an array node.
� represents the frequency of the external excitation. Con-
sider an open array of three coupled VdP oscillators shown
in Fig. 1. The evolution of oscillators coupled in this array is
given by

ẋ1 = z1, �2a�

ż1 = d�1 − x1
2�z1 − x1 + cos���� + ��2x2 − 2x1� , �2b�

ẋ2 = z2, �2c�

ż2 = d�1 − x2
2�z2 − x2 + cos���� + ��2x1 + x3 − 3x2� ,

�2d�

ẋ3 = z3, �2e�

ż3 = d�1 − x3
2�z3 − x3 + cos���� + ��x2 − x3� , �2f�

where � is a constant coupling coefficient.
In numerical analysis we assume d=0.401, �=1.207, and

consider � as a control parameter. In experiments we use an
electronic implementation of this array shown in Fig. 2.

The dynamics of the considered array can be described in
a block form,

ẋ = F�x� + ��G � H�x , �3�

where x= �x1 ,x2 ,x3��R6, F�x�= �f�x1� , f�x2� , f�x3��, G is the
connectivity matrix, i.e., the Laplacian matrix representing
the topology of connections between the network nodes,

G = �− 2 2 0

2 − 3 1

0 1 − 1
� , �4�

� is a direct �Kronecker� product of two matrices and
H :R2→R2 is an output function of each oscillator’s vari-
ables that is used in the coupling �it is the same for all
nodes�. The connection of oscillators shown in Eqs. �2a�–�2f�
can be classified as a case of pure �diagonal components are
equal to zero� nondiagonal coupling due to the form of out-
put function

H = �0 0

1 0
� . �5�

Here, a subject of our interest are the ranges of the coupling
coefficient � where the so-called complete synchronization,
i.e., full coincidence of phases �frequencies� and amplitudes
of responses of coupled systems �1�, occurs. The complete
synchronization requires an ideal identity of these systems,

FIG. 1. The model of an open array of van der Pol’s oscillators
�VdPO�.
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i.e., they are given with the same ordinary differential equa-
tions with identical system’s parameters. In order to estimate
the synchronization thresholds of coupling parameter, we ap-
ply the idea of the MSF �3�. Under this approach, the syn-
chronizability of a network of oscillators can be quantified
with eigenvalues �k of connectivity matrix G, k=0,1 ,2. In
the case under consideration, matrix G has three real eigen-
values �0=0, �1=−1.27, �2=−4.73, so this is a variant of
diffusive real coupling �4� �in the general case �k can be a
complex number�. After the block diagonalization of the
variational equation of Eq. �3� there appear three separated

blocks �̇k= �Df+��kDH��k, where Df and DH are Jacobi
matrices of the node system and linking function, respec-
tively �k=1,2 ,3�. For �0=0 we have linearized the equation
of the node system �Eq. �1�� which is corresponding to the
mode longitudinal to invariant synchronization manifold x1
=x2=x3. The remaining two eigenvalues �1,2 represent two

different transverse modes of perturbation from synchronous
state �3,4�.

Assuming that � represents an arbitrary value of �k and �
symbolizes an arbitrary transverse mode, we can define the
generic variational equation for any node system

�̇ = �Df + ��DH�� . �6�

Substituting the analyzed system �Eq. �1�� in Eq. �6� we
obtain

�̇ = � ,

�̇ = d�1 − x2�� − 2dx�z − � + ��� . �7�

Thus, the generic variational equation �Eq. �7�� describes
an evolution of any perturbation in the directions transversal
to the final synchronous state, that dynamics is governed by

FIG. 2. An electronic implementation of an open array of VdP oscillators shown in Fig. 1.
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Eq. �1�. Now, we can define the MSF for the considered case
as a bifurcational diagram of the largest transversal
Lyapunov exponent �T, calculated for the generic variational
equation �Eq. �7��, versus product ��. The MSF graph for
the presented example �Eqs. �1� and �7�� is depicted in Fig. 3.
If products ��1,2 corresponding to both transversal eigen-
modes �in the general case any number of them� can be
found in the ranges of negative transversal Lyapunov expo-
nent, then the synchronous state is stable for the analyzed
configuration of couplings.

In order to confirm our numerical simulations experimen-
tally we have built a setup which is schematically depicted in
Fig. 2. Each VdP oscillator has been implemented as the
circuit �8� �shown in black frame in Fig. 2� composed of two
capacitors C1 and C2, seven resistors R�1−7�, and two mul-
tiplicators AD-633JN which introduce nonlinearity. Multipli-
cators have the following characteristic: W= �1 /Vc��X1
−X2��Y1−Y2�+Z, where X1, X2, Y1, and Y2 are the input
signals, W is an output signal, and Vc=10 V is a character-
istic voltage. The input Em cos �t, where amplitude Em and
frequency � are constant, represents external excitation. The
additional resistors R8 and R have been used to realize the
coupling. In our implementation we used out of shelf ele-
ments: R1=9920�	�, R2=999�	�, R3=501�	�, R4
=100�	�, R5=10 000�	�, R6=10 000�	�, R7=16 150�	�,
R=180 000�	�, C1=10�nF�, C2=10�nF�. R8
� �0	 ,44 000	� has been taken as a control parameter. The
equivalent elements in each circuit can differ by 1% of their
nominal values.

The relation between the circuits real parameters and di-
mensionless parameters of Eqs. �2a�–�2f� is as follows: �0

2

= 1
C1C2R2R7 , d= 1

C1R1�0
, �= �

�0
, x1−3=V1−3

R3
EmR2 , z1−3

=
V1−3
R3

EmR2�0
, �= R2

R8 . Nonidentity of elements used in each
circuit introduces the mismatches of d and � parameters in
Eqs. �2b�, �2d�, and �2f�. The estimated mismatches are
smaller than �0.001.

Data acquisition is performed using a Data Acquisition
System 3200A \415 board connected to a computer con-
trolled by software developed in Microstar Labs. The dy-
namical variables of interest in this circuit are the voltages
V1−3 of each oscillator measured in the points indicated in
Fig. 2. The first derivatives of the potentials 
V1−3 are taken
in the point also indicated in Fig. 2.

In our example we have considered �=1.207 and its real
equivalent �=4780 Hz in experiment. Then, in the absence
of coupling each oscillator exhibits periodic behavior �the
largest LE �1=−0.126� with the period equal to the period of
excitation. Looking at the MSF diagram �Fig. 3�, we can
expect an appearance of the RSA of coupled VdP oscillators
�Eq. �1��, because two disconnected regions of negative
transversal Lyapunov exponent ���� �0,1− � or �1+ ,���
can be observed. Consequently, at least two separated syn-
chronous ranges of coupling parameter � should be visible,
i.e., the RSA effect takes place. However, synchronous inter-
vals of the coefficient � not always are an exact reflection of
the MSF intervals, where the transversal Lyapunov exponent

FIG. 4. Comparison of numerical and experimental results, d
=0.401, �=1.207; �a�–�c� desynchronizing mechanism: A projec-
tion from the MSF diagram �a�, via eigenvalues �k of connectivity
matrix G �b�, to the bifurcation diagram of synchronization error e
versus coupling coefficient � �c� �desynchronous intervals are
shown in gray, complete synchronization takes place in � ranges
where e approaches zero value�, �d� synchronization error e versus
�; experimental results, gray line with scatters �marking measure-
ment points�, numerical results for the case of parameter mismatch;
black line, the values of d taken in Eqs. �2b�, �2d�, and �2f� are,
respectively, 0.400, 0.401, and 0.402.

FIG. 3. The largest transversal Lyapunov exponent �T, calcu-
lated for generic variational equation �7�, versus product ��; �
=1.207, d=0.401.
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is positive. The RSA mechanism is explained in Figs.
4�a�–4�c�, where a projection from the MSF diagram �Fig.
4�a��, via eigenvalues of connectivity matrix G �Fig. 4�b��, to
the bifurcation diagram of synchronization error

e = 	
i=2

3


�x1 − xi�
 , �8�

versus coupling strength � �Fig. 4�c�� is shown. Complete
synchronization takes place in the � ranges where e ap-
proaches zero value �Fig. 4�c��. We can observe third syn-
chronous ��1+

2 ,�1−
1 � and second desynchronous ��1−

2 ,�1+
2 � �

intervals in comparison with only two synchronous and one
desynchronous MSF ranges, respectively. ‘‘Additional’’ de-
synchronous interval appears because the mode 2 �associated
with eigenvalue �2� crosses the desynchronous MSF interval
�1− ,1+ � while the mode 1 �associated with �1� is still lo-
cated in the first synchronous MSF interval �0,1− �, see Fig.
4�b�. Then in the narrow range ��1+

2 ,�1−
1 �, two modes are in

synchronous MSF interval so that one can observe an “addi-
tional window” of synchronization in the � interval. The
second desynchronous � interval corresponds to mode 1 de-
synchronizing bifurcation. Finally, the steady synchronous
state is achieved due to increasing coupling strength at �
=0.6. The ragged synchronizability manifests in alternately
appearing windows of synchronization and desynchroniza-
tion. In the above description some special notation for �
ranges has been introduced. Such a notation brings informa-
tion of which mode �first or second� desynchronizing bifur-
cation �superscripts� takes place during the transition from
the synchronous to the desynchronous regime and which
edge of the desynchronous interval of MSF �1− and 1+ in
subscripts correspond to lower and higher edges, respec-
tively� is associated with the given boundary value of the
coupling coefficient. In Fig. 4�d� the results of experimental
investigation of the synchronization process in the analyzed
circuit are demonstrated. The plot of experimentally gener-
ated synchronization error �reduced to nondimensional form
and calculated with the use of Eq. �8�� versus coupling
strength � is shown in gray with scatters. Obviously, in the
case of real VdP oscillators the perfect complete synchroni-

zation cannot be achieved due to unavoidable parameter mis-
match. However, in such a case the imperfect complete syn-
chronization can be observed, i.e., the correlation of
amplitudes and phases of the system’s responses is not ideal,
but a synchronization error remains relatively small during
the time evolution. One can notice a qualitative coincidence
between numerical simulations and experiment comparing
Fig. 4�c� with Fig. 4�d�, i.e., regions of the imperfect com-
plete synchronization tendency in a real circuit correspond
well to the complete synchronization ranges in a numerical
model. In the last stage of our research the influence of pa-
rameters mismatch on the synchronization error e has been
analyzed numerically. We have estimated a slight disparity of
the values of d in all three VdP oscillators with measuring
their real parameters. Next, such an approximated mismatch
has been realized in the considered model �Eqs. �2a�–�2f��
�the values of d taken in Eqs. �2b�, �2d�, and �2f� are, respec-
tively, 0.400, 0.401, and 0.402�. The synchronization error
simulated numerically for this model is represented with a
black line in Fig. 4�d�. Its good visible agreement with ex-
perimental result shows that a slight difference of coupled
oscillators does not destroy their synchronization tendency,
i.e., the imperfect complete synchronization takes place.

To summarize, comparing analytical �obtained by MSF
approach� �Fig. 4�b��, numerical �Fig. 4�c��, and experimen-
tal results �Fig. 4�d�� we can confirm the occurrence of the
RSA in the real system of coupled oscillators. We have ob-
served this phenomenon in an electronic implementation of
an array of VdP oscillators with nondiagonal coupling be-
tween the nodes. A good agreement between numerical simu-
lation and experimental observations which shows that the
mechanism responsible for the appearance or disappearance
of the windows of synchronizability is the same as described
in �6�. It seems that the phenomenon of RSA is common for
the systems with nondiagonal coupling and not sensitive for
the small parameter mismatch, i.e., can be observed in real
experimental systems.
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