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We show the phenomenon of complete synchronization in an network of coupled oscillators. We

confirm that non-diagonal coupling can lead to the appearance or disappearance of synchronous

windows (ragged synchronizability phenomenon) in the coupling parameter space. We also show the

appearance of clusters (synchronization in one or more group) between coupled systems. Our

numerical studies are confirmed by an electronic experiment.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Collective dynamics of coupled systems has been known for a
long time, i.e., since the second half of 17th century, when
Huygens discovered the synchronization of two clock pendulums
[10]. Next, this phenomenon has been observed and investigated
in various types of mechanical or electrical systems [5,19,24].
Recently, the idea of synchronization has been also adopted for
chaotic systems [15] and it has become an object of great interest
in many areas of science, e.g., biology [9,22], communication [6]
or laser physics [28,32].

Through the last years a number of new types of synchroniza-
tion have been identified [20,21] and new interesting ideas have
appeared [3,27]. It has been demonstrated that two or more
chaotic systems can synchronize if they are under control of some
connection mechanisms. Typical examples of such mechanisms
are drive-response [15,16] or active-passive decomposition [13]
of the considered system, direct bi-directional (mutual) or
unidirectional (master-slave) diffusive coupling between the
oscillators [12,29,30].

In our previous work [23], we presented an example of non-
diagonally coupled array of Duffing oscillators, in which multiple
disconnected synchronous regions of coupling strength occur. The
term non-diagonal coupling means that the network nodes are
linked with others via non-diagonal components of linking
(output) function. We have also observed the appearance or
disappearance of such synchronous windows in coupling para-
ll rights reserved.
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meter space, when the number of oscillators in the array or
topology of connections between them changes. This phenomen-
on has been called the ragged synchronizability (RSA). The
existence of the RSA has been confirmed numerically [23] and
experimentally [17]. Usually, in papers concerning these new
ideas classical autonomous dynamical systems have been used as
the examples, i.e., the Lorenz and Rössler oscillators, non-linear
discrete-time systems (e.g. logistic and Henon map), neuron
models etc. On the other hand there is a lack of works on new
synchronization concepts applied for non-autonomous systems
like mechanical or electrical oscillators with external forcing.
Hence, this paper deals with synchronization of non-linear
oscillators with a harmonic driving (Section 5), where phenomena
of the RSA and clustering (synchronization of oscillator’s sub-
groups) can be observed. For needs of clear presentation of the
RSA effect we concentrated on the complete synchronization (CS)
mode in sense of total time-coincidence of phases and ampli-
tudes. The synchronization of periodic responses with phase shift
is represented here by effect of clustering. In the numerical
analysis, the Van der Pol (VdP) [26] oscillator with non-linear
damping, which can be treated as an equivalent of mechanical
self-excited system, has been applied as an array node system.
Such a choice is due to option of continuous control of the system
parameters in electrical oscillators. Then the experimental
bifurcational analysis of the system dynamics is possible.

This paper is organized as follows. In Section 2 basic
definitions concerning synchronization problems under consid-
eration are presented. Section 3 approaches the idea of Master
Stability Function (MSF) [14], which is a main tool for carried out
analysis of the synchronization. Next Section 4 contains an
detailed description of investigated VdP oscillator. Results of
ny in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.

www.elsevier.com/nlm
dx.doi.org/10.1016/j.ijnonlinmec.2010.01.010
mailto:steve@p.lodz.pl
dx.doi.org/10.1016/j.ijnonlinmec.2010.01.010


ARTICLE IN PRESS

P. Perlikowski et al. / International Journal of Non-Linear Mechanics ] (]]]]) ]]]–]]]2
numerical and experimental study and their comparison are
demonstrated in Section 5. The paper finishes with conclusions
(Section 6).
2. Synchronization and clustering

Pecora and Carroll [15] defined the CS between two dynamical
systems as a state when their state trajectories x(t) and y(t)
converge to the same values and continue in such relation further
in time. Thus, the CS means a full coincidence of phases
(frequencies) and amplitudes of the systems response. Earlier
the problem of the CS threshold in arrays of coupled identical
oscillators was studied by Fujisaka and Yamada [8,30] and
Pikovsky [18].

Definition 1.1. Complete synchronization of two dynamical
systems represented with their phase plane trajectories x(t) and
y(t), respectively, takes place when the following relation is
fulfilled:

lim
t-1

JxðtÞ�yðtÞJ¼ 0: ð1Þ

It is also described in the subject literature as identical or full
synchronization [16,20]. The CS state can be reached only when
two identical dynamical systems are concerned, say, they are
given with the same ODEs with identical system parameters. This
condition of identity may not be fulfilled due to presence of an
external noise or parameters mismatch what usually can happen
in real systems. If scale of such disturbances is relatively small,
then both systems may eventually reach a state called imperfect
complete synchronization (ICS) [12], sometimes named as
practical or disturbed synchronization.

Definition 1.2. Imperfect complete synchronization of two
dynamical systems represented with their phase plane trajec-
tories x(t) and y(t), respectively, occurs when the following
inequality is fulfilled

lim
t-1

JxðtÞ�yðtÞJre, ð2Þ

where e is a small parameter. The CS (or the ICS) of entire network
or array of mechanical oscillators means a collective motion of
them, i.e., they have the same position and velocity in each
moment of time evolution. However, if there is a set composed of
N42 identical nodes then it can be divided into two or more
subsets within which the motion of oscillators is collective while
between subsets the dynamics is uncorrelated or at least a phase
shift is observed, e.g. two groups of subsystems in anti-phase
regime. Such subgroups of synchronized oscillators are called
clusters [4,11].

3. Stability of synchronous state

Consider a dynamical system

_x ¼ fðxÞ, ð3Þ

where xARm.
The dynamics of any network of N identical oscillators can be

described in block form:

_x ¼ FðxÞþðsG�HÞx, ð4Þ

where x¼(x1,y,xN), F(x)¼(f(x1),y,f(xN)), G is the connectivity
matrix, i.e., the Laplacian matrix representing the topology of
connections between the network nodes, s is the overall coupling
coefficient, � is a direct (Kronecker) product of two matrices and
H : Rm-Rm is an output function of each oscillator’s variables
that is used in the coupling (it is the same for all nodes).
Please cite this article as: P. Perlikowski, et al., Discontinuous synchr
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After the derivation the variational equation of the network
system (4) is as follows

_n ¼ ½I� DFþsðG� DHÞ�x, ð5Þ

where n¼ ðx1,x2, . . . ,xNÞ represents collection of perturbation, I is
an identity matrix and DF, DH are Jacobi matrices of system (4)
and output function, respectively.

After the block diagonalization of the variational equation
(Eq. (5)) we have

_xk ¼ ½DfþsgkDH�xk, ð6Þ

For g0 ¼ 0 we have linearized the equation of the node system
(Eq. (3)) which is corresponding to the mode longitudinal to
invariant synchronization manifold x1 ¼ x2 ¼ � � � ¼ xN . The re-
maining N�1 eigenvalues represent different transverse modes of
perturbation from synchronous state. In the general case they can
be complex numbers. However, for identical coupled mechanical
oscillators eigenvalues gk are real numbers due to the symmetry
of coupling. This symmetry results from a mutual character of the
interaction between mechanical systems according to 3rd
Newton’s law of dynamics. Such a symmetry of coupling
(i.e. diagonal symmetry of connectivity matrix G) results from
the identity of coupled oscillators. In case of non-identical
systems (e.g. different masses of the oscillators) there appear
non-symmetry in matrix G, in spite of mutual interaction of
oscillators.

Assuming that g represents an arbitrary value of gk and f

symbolizes an arbitrary transverse mode xk, we can define the
generic variational equation for any node system

_z ¼ ½DfþsgDH�z: ð7Þ

Generic variational equation (Eq. (7)) describes an evolution of
any perturbation in the directions transversal to the final
synchronous state, that dynamics is governed by Eq. (3). Now,
we can obtain the MSF for the considered case as the largest
transversal Lyapunov exponent l1

T , calculated for generic varia-
tional equation (Eq. (7)), including the solution of Eq. (3), in
function of the product sg. An exemplary MSF graph is depicted in
Figs. 1a and b. If discrete spectrum of products sgk corresponding
to all transversal eigenmodes can be found in the ranges of
negative transversal Lyapunov exponent (see Fig. 1a) then
synchronous state is stable for the analyzed configuration of
couplings. This is a necessary condition for synchronization of all
network nodes. However, sometimes it may not be a sufficient
one due to possible local instability of the synchronization
manifold [2]. On the other hand, if even one of values sgk is
located in the range of positive l1

T (see Fig. 1b) then the CS
of all oscillators is impossible, but synchronization in clusters
can occur.
4. Analyzed oscillator

A graphical representation of the analyzed mechanical oscil-
lator is shown in Fig. 2a. This is a well known Van der Pol (VdP)
oscillator with non-linear damping d(1�y2) and linear spring
characteristic ky which can be considered as an equivalent of self-
excited mechanical oscillator. We apply additional harmonic
driving of VdP circuits for needs of experiment because the
signal from common external generator allowed us to easy
control of the circuits dynamics and improved the identity of
array systems during the experimental research.

Assuming, under harmonic driving with amplitude A the
system under consideration can be described by the following
ony in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.
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Fig. 1. Examples of the MSFs.

Fig. 2. Scheme of single VdP oscillator: (a) mechanical and (b) electrical.
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second order differential equation

m €y ¼ dyð1�y2Þ _y�kyyþAcosðOtÞ, ð8Þ

where O represents the frequency of the external excitation
ðFðtÞ ¼ AcosðOtÞÞ.

During experimental studies we have used the classical
electrical version of VdP oscillator [26,25] which allowed us to
detailed bifurcational analysis of the researched problem.

A scheme of applied electrical circuit is shown in Fig. 2b. The
circuit is composed of two capacitors C1 and C2, seven resistors
R(1�7) and two multiplicators AD-633JN [1] which introduce
non-linearity. Multiplicators have the following characteristic
W ¼ ð1=VcÞðX1�X2ÞðY1�Y2ÞþZ, where X1, X2, Y1 and Y2 are the
input signals, W is an output signal, Z is a correction to output
signal and Vc¼10 V is a characteristic voltage. The error caused by
multiplicator is less the 2% and the input resistance is 10 MO and
has negligible influence on input signal.

Oscillator is supplied by direct 18 V current from amplifier ZPA
81. The forcing signal EmcosðotÞ is generated in generator G 432
with maximum amplitude Em¼5 V and frequency in range
oA ð0 Hz,1 MHzÞ. The additional resistors R8 and R have been
used to realize the coupling.

The node system y1 is given by equation:

y1 ¼
1

C1R4

Z
y4 dt�

1

R2C1

Z
y dt�

1

R1C1

Z
�

R6

R5
y1

� �
dt

þ�
1

R3C1

Z
EmcosðotÞdt: ð9Þ

Basis on multiplicator property one can write

y4 ¼
y1y2

100 V2
: ð10Þ

Signal y is given by formula:

y¼�
1

R7C2

Z
�

R6

R5
y1

� �
dt¼

R6

R5R7C2
: ð11Þ
Please cite this article as: P. Perlikowski, et al., Discontinuous synchro
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After derivation of Eq. (11):

_y ¼
R6

R5R7C2
y1, ð12Þ

and rearranging of Eq. (12) one can determinate y1:

y1 ¼
R5R7C2

R6
_y: ð13Þ

Substitute Eq. (9) to (12):

_y ¼
R6

R5R7C2

1

C1R4

Z
y4 dt�

1

R2C1

Z
y dt�

1

R1C1

Z
�

R6

R5
y1

� �
dt

�

þ�
1

R3C1

Z
EmcosðotÞdt

�
: ð14Þ

After derivation Eq. (14) has following form:

€y ¼
R6

R5R7C2

1

C1R4
y4�

1

R2C1
y�

1

R1C1
�

R6

R5
y1

� �
þ�

1

R3C1
EmcosðotÞ

� �
:

ð15Þ

Substitute Eqs. (10) and (13) to Eq. (15), and use dependence
100R4� R1 one can achieve

€y�
1

C1R1
ð1�y2Þ _yþ

1

C1C2R2R7
y¼

EmcosðotÞ

C1C2R3R7
: ð16Þ

For numerical analyse it is necessary to rewrite Eq. (16) in two
dimensionless first order equations

_z ¼ x, _x ¼ dð1�x2Þz�xþcosðOtÞ, ð17Þ

where o2
0 ¼ 1=C1C2R2R7, d¼ 1=C1R1o0, O¼o=o0, x¼ yR3=

EmR2, _x ¼ _yR3=EmR2o0, €x ¼ €yR3=EmR2o2
0.
5. Numerical and experimental results

In the experiment an array of three VdP-type oscillators
coupled via linear springs of a rate k, shown in Fig. 3a, was
investigated. The evolution of each oscillator coupled in array is
ny in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.
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Fig. 3. The model of an open array of Van der Pol’s oscillators in a mechanical (a) and electrical (b) representation.
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given by the following set of dimensionless equations:

_x1 ¼ z1, ð18aÞ

_z1 ¼ dð1�x2
1Þz1�x1þcosðOtÞþsðx2�x1Þ, ð18bÞ

_x2 ¼ z2, ð18cÞ

_z2 ¼ dð1�x2
2Þz2�x2þcosðOtÞþsðx1þx3�2x2Þ, ð18dÞ

_x3 ¼ z3, ð18eÞ

_z3 ¼ dð1�x2
3Þz3�x3þcosðOtÞþsðx2�x3Þ, ð18fÞ
Please cite this article as: P. Perlikowski, et al., Discontinuous synchr
(2010), doi:10.1016/j.ijnonlinmec.2010.01.010
where s¼ R2=R8 is a constant coupling coefficient.
In the numerical analysis we assumed d¼0.401, resulting

from real parameters of experimental circuit, and considered O
and s as control parameters. The coupling via springs
can be classified as the case of pure (diagonal components
are equal to zero) ND coupling due to the form of output
function

H¼
0 0

1 0

� �
: ð19Þ

The structure of the nearest-neighbor connections of
array nodes is described by the following connectivity
ony in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.
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matrix

G¼

�1 1 0

1 �2 1

0 1 �1

2
64

3
75: ð20Þ

Matrix G has the following eigenvalues g0 ¼ 0, g1 ¼�1,
g2 ¼�3. Substituting the analyzed system (Eqs. (17) and (19)) in
Eq. (7) we obtain the generic variational equation for calculating
the MSF, i.e., l1

T ðsgÞ in the form

_z ¼c, ð21aÞ

_c ¼ dð1�x2Þz�2 dxcz�cþsgc: ð21bÞ

In Fig. 4 desynchronous regions, quantified by the
synchronization error

e¼
X3

i ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�xiÞ

2
þðz1�ziÞ

2
q

, ð22Þ

where i¼2,3, versus the coupling coefficient s and the frequency
of external excitation O are depicted.

We assumed that systems are synchronized when value
synchronization error e is lower the two percent of its maximum
value (here emax � 1). Hence, according to such a criterion in the
white region eo0:02 so the systems are synchronized. On the
other hand, grey and black regions denote desynchronization
connected with the modes associated with eigenvalues g1 and g2

respectively. The calculations have been performed according to
an idea of the MSF for the probe of two oscillators [7]. One can
expect the RSA to appear for OAð1:2,1:5Þ.

For researched value O¼ 1:22 in the absence of coupling each
oscillator shows periodic behavior with the period equal to the
period of excitation. To obtain better accuracy, in this single case,
we calculate the MSF by means of maximum transversal
Lyapunov exponent l1

T versus sg. In Fig. 5 we present the
graphical illustration how the MSF idea can be used to
determine the synchronization and desynchronization
thresholds. We show that transforming the MSF plot (Fig. 5a)
via eigenvalues of connectivity matrix G (Fig. 5b) one can
determine these ranges for real coupling coefficient s (Figs. 5c
and d). This picture also allows us to clearly present the
mechanism of the RSA.
Fig. 4. The synchronization error e¼
P3

i ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�xiÞ

2
þðz1�ziÞ

2
q

versus coupling

coefficient s and the frequency of external excitation O for Eq. (9); d¼0.401.

Please cite this article as: P. Perlikowski, et al., Discontinuous synchro
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In Fig. 5a one can see the MSF, i.e., the plot of the largest
transversal Lyapunov exponent l1

T versus the product sg, then in
Fig. 5b the lines which correspond to eigenvalues of connectivity
matrix G (see Eq. (20)) and in Fig. 5c the synchronization error e

calculated numerically is presented. Moreover, in Fig. 5d the
experimental measurements of the synchronization error e is
showed. It is easy to see that synchronization ranges obtained by
transformation of the MSF plot via eigenvalues g1 and g2

(see Fig. 5b) correspond to thresholds determined by numerical
(Fig. 5c) and experimental (Fig. 5d) estimation of the synchroniza-
tion error. In both these diagrams the RSA is visible as the ‘windows’
of synchronization and desynchronization before the final stable
synchronous state is achieved for the coupling strength s¼ 0:8. In
Fig. 5e we show the zoom with more measurement points of middle
synchronized range ðs2

1þ ,s1
1�Þ. The new desynchronized ranges are

signed after the index of eigenvalue which cause their appearance
(see Figs. 5b, c). Such a notation brings an information which mode
(1st or 2nd) desynchronizing bifurcation (superscript) takes place
during the transition from the synchronous to the desynchronous
regime and which edge of desynchronous interval of the MSF from
Fig. 5a (1� and 1+ in subscript correspond to lower and higher
edges, respectively) is associated with the given boundary value of
the coupling coefficient.

Now let us concentrate on numerical results (Figs. 5a–c) and
present in detail the mechanism of creation of the RSA. The CS
takes place in the s�ranges where e approaches zero value. In
Fig. 5a one can see one desynchronization range (1� ,1+) of the
MSF, where the TLE is positive, and on both sides of it two
synchronization ranges of the negative TLE, i.e., sgA ð0,1�Þ and
sg41þ . However, in Fig. 5c two desynchronous ranges ðs2

1�,s2
1þ Þ

and ðs1
1�,s1

1þ Þ appear, which are separated by narrow synchro-
nization range ðs2

1þ ,s1
1�Þ. First desynchronous interval appears

because the mode 1 (associated with eigenvalue g1) crosses the
desynchronous MSF-interval (1� , 1+) while the mode 2
(associated with g2) is located in the second synchronous
MSF-interval ð1þ ,1ÞFsee Fig. 5(b). Second desynchronous range
is created in the same way. Then in very narrow range ðs2

1þ ,s1
1�Þ

two modes are in synchronous MSF-interval so one can observe
‘‘additional middle window’’ of synchronization in s�interval.
Finally, the steady synchronous state is achieved due to increasing
coupling strength at s¼ 0:8.

It should be mentioned here that in the experiments it is
impossible to avoid parameter mismatches so the complete
synchronization is replaced by the ICS in which synchronization
error is sufficiently small but not equal to zero. One can see a good
agreement in both results. We have estimated a slight disparity of
the values of d in all three VdP oscillators with measuring their real
parameters. Next, such an approximated mismatch has been
realized in the considered model (Eqs. (18a–f)) (the values of d

taken in Eqs. 18(b), 18(d) and 18(f) are respectively 0.400, 0.401 and
0.402). The synchronization error simulated numerically for this
model is represented with grey line in Fig. 5d. Its good visible
agreement with experimental result shows that a slight difference of
coupled oscillators does not destroy their synchronization tendency,
i.e., the ICS takes place.

In considered network one can also observe the pheno-
menon of clustering, mentioned above [4,11]. In our case
we can obviously observe only (2,1) cluster, i.e, two nodes
have common behaviour and one node is independent.
We defined the synchronization errors between first and

second ðe1�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�x2Þ

2
þðz1�z2Þ

2
q

Þ and first and third

ðe1�3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�x3Þ

2
þðz1�z3Þ

2
q

Þ oscillator. In Fig. 6 we present

results of numerical calculation of synchronization error e1�2

(black line) and e1�3 (grey line).
ny in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.
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Fig. 5. Projection from the MSF l1
T ðsgÞ (a) via eigenvalues of the connectivity matrix (b) to the bifurcation diagram of the synchronization error (c) calculated according to

Eq. (22). Desynchronization intervals connected with eigenvalues g1 and g2 are shown in grey; d¼0.401, O¼ 1:22. Comparative diagram of the synchronization error

detected experimentally (in black) and numerically with introduced parameter’s mismatch (in grey) (d) and its enlargement (e).
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As it easy to see in range s¼ ð0:1,0:27Þ one can observed a
cluster between first and third oscillator, while second system is
in the desynchronized state with them. This phenomenon is
confirmed by calculation of eigenvectors [31] of connectivity
matrix G. The synchronization in range s¼ ð0:1,0:27Þ is governed
by eigenvalue g2 ¼�3:0 with corresponding eigenvector
v2¼[�0.4082,0.8165,�0.4082]T, where first and third component
corresponding to synchronized oscillators are identical. Such an
equality of two components of v2 leads to the existence of
cluster shown in Fig. 6. The eigenvector of g1 ¼�1:0 is
Please cite this article as: P. Perlikowski, et al., Discontinuous synchr
(2010), doi:10.1016/j.ijnonlinmec.2010.01.010
v1¼[�0.7071,0.0,0.7071]T and clusters do not exists because all
components are different.
6. Conclusions

To summarize, we have confirmed and explained the phenomen-
on of the RSA in the networks of VdP oscillators. Additionally, we have
analyzed the process of clustering in considered system. We
have shown the mechanism responsible for the appearance or
ony in an array of Van der Pol oscillators, Int. J. Non-Linear Mech.
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Fig. 6. Comparison of numerical (a) and experimental (b) synchronization error

e1�2 (black line) and e1�3 (grey line) versus coupling coefficient s; d¼0.401,

O¼ 1:22.
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disappearance of the windows of synchronizability is the same as the
previously studied network of Duffing oscillators [23]. It seems that
the phenomena of the RSA and clustering are common for the
mechanical systems coupled via elastic element (spring). These effects
are also insensitive for the small parameter mismatch, i.e., they can be
observed in real mechanical and electrical systems.
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