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a b s t r a c t

The dynamics of the tossed coin can be described by deterministic equations of motion,
but on the other hand it is commonly taken for granted that the toss of a coin is random.
A realistic mechanical model of coin tossing is constructed to examine whether the initial
states leading to heads or tails are distributed uniformly in phase space.We give arguments
supporting the statement that the outcome of the coin tossing is fully determined by
the initial conditions, i.e. no dynamical uncertainties due to the exponential divergence
of initial conditions or fractal basin boundaries occur. We point out that although heads
and tails boundaries in the initial condition space are smooth, the distance of a typical
initial condition from a basin boundary is so small that practically any uncertainty in initial
conditions can lead to the uncertainty of the results of tossing.
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Nomenclature

e0, e1, e2, e3 Euler parameters (normalized quaternions),
r, rA, rB, rC coin point position vectors,
Rϕi rotation matrices for the rotation through angle ϕi,
Ri/j coordinate transformation matrices from xyz coordinate frame to ξηζ coordinate frame,
r, h dimensions (radius and thickness) of coin, m,
ψ , ϑ , ϕ rotation angles of coin (Euler angles), rad,
ωξ , ωη , ωζ coin angular velocity components in body frame ξηζ , rad/s,
ϕ1, ϕ2, ϕ3 angles of rotation, rad,
JB inertia matrix of the coin (mass moments of inertia of the coin with respect to Bξηζ frame),
JC inertia matrix of the coin (mass moments of inertia of the coin with respect to Cξηζ frame),
Jξ , Jη , Jζ coin mass moments of inertia for Bξηζ (or Cξηζ ) axes, kg m2,
Jξη , Jηζ , Jζ ξ inertia products of the coin in Bξηζ (or Cξηζ ) frame, kg m2,
λn, λτ dimensional air resistance coefficients — in normal and tangent directions,
χ restitution coefficient,
Sx, Sy, Sz components of reaction force impulses, N s,
M mass matrix of the coin (M = diag [m m m]),
m mass of the coin, kg,
f1, . . . , f3 vectors of air resistance force components,
m1,m2,m3 vectors of air resistance moment components,
Mξ ,Mη ,Mζ air resistance moment components,
E, T , V total mechanical energy, kinetic and potential energy of the coin, kg m2/s2,
t time, s,
vAi vector of velocity of coin point Ai,
xyz base reference frame (fixed),
x′y′z ′ body (coin) embedded frame (parallel to the spatial frame xyz),
ξηζ body (coin) embedded frame,
ξA, ηA, ζA, ξC , ηC , ζC point A (C) position vector components in body embedded frame,
x, y, z displacements of the coin mass center in the xyz frame, m,
ẋ′, . . . , v′Az components of body point velocity vectors after body collision, m/s,
ωξ vector of angular velocity of the coin in body embedded frame ξηζ ,
ω vector of the coin angular velocity components in base reference frame xyx,
�ξ skew (antisymmetric) matrix of ξηζ coin angular velocity components.

1. Introduction

The historical origin of coin tossing is the interpretation of a chance outcome as the expression of divine will. A well-
known example of such a selection (although not explicitly involving a coin) is the episode from The Holy Bible [1] in which
the prophet Jonah was chosen by lot to be cast out of the boat, only to be swallowed by a giant fish (Book of Jonah, Chapter
1). The coin tossing as a game was known to the Romans as ‘navia aut caput’ (‘ship or head’), as some coins had a ‘ship’ on
one side and the head of the Roman emperor on the other. In medieval England, this game was referred to as ‘cross and pile’
and was usually played using homemade coins with a cross on one side.
The coin tossing is a simple and fair way of deciding between two arbitrary options. It is assumed that it provides even

odds to both sides involved, requiring little effort and preventing the dispute from escalating into a struggle. It is usedwidely
in sport and to decide about arbitrary factors such as; which side of the field a team will start the game from, or which side
will attack or defend initially. In team sports (soccer, American football, ice hockey, etc.) it is often the team captain who
makes the call, while the referee usually tosses a coin. A spectacular case took place in the 1968 European Football (Soccer)
Championship. The semi-final gamebetween Italy and the Soviet Union finished 0–0 after an extra-time. At that timepenalty
shoot-out was not introduced and the decision was reached to toss a coin to see who gets to the final, rather than play a
replay. Italy won, and went on to become the European champion.
In some jurisdictions, a coin is tossed to decide between two candidates who poll an equal number of votes in an election,

or two companies tendering the equal prices for a project (such a situation occurred in Toronto in 2003). In more casual
settings, a coin tossing is used simply to resolve the arguments between friends or family members.
It is commonly taken for granted that the toss of a coin is random. This statement is fundamental in the probability

theory [17,39,32] and usually two types of coins aremathematically distinguished. The coin is fair if the probability of heads
and tails is equal, i.e., Prob(heads) = Prob(tails) = 1/2. The coin has the known bias θ ∈ (0, 1] if Prob(head) = 1/2(1+ θ).
Tossing the coin is frequently used to describe the problems concerning random walks on scenery [24,8,28]. The random



J. Strzałko et al. / Physics Reports 469 (2008) 59–92 61

walk is an example of a stochastic process going on in time; namely, the motion of a particle which is randomly hoping
backward or forward [22]. Backward or forward steps can be determined by tossing a coin.
One of the random walk problems is a variation of Gambler ruin game [60,40,31,15,23] in which a rich player gambles

with a set amount of money while the poor one starts out with zero capital, and is allowed to toss a coin in order to try to
win the money. If the coin is heads, the poor player wins a dollar but if it is tails, the player loses a dollar. The poor player is
always allowed to win the first toss, and is allowed to toss n times, even when the amount of money lost reaches zero. The
studies of Cooper [10,11] show that the dynamics in this process is chaotic as the result of the fluctuations in the variance
of the amount of money [10], and can model the on–off intermittency [58]. Coin tossing can be also considered as a billiard
problem [5].
The toss of the coin belongs to the group of classical randomization mechanical systems. Other elements in this group

are e.g. roulette and Buffon’s needle. The analysis of the dynamical behavior of roulette goes back to Poincare [59]. His
results suggest that as the roulette ball is spun more and more vigorously the outcome number is independent of the
initial conditions (initial conditions are washed out). For a large number of trials the numbers become close to the uniform
distribution. Later studies [6,7] suggest that the real roulette may not be vigorous enough to wash out initial conditions.
E. Hopf studies of Buffon’s needle [25–27] show independence of the successive outcomes but also give examples where the
initial conditions are not washed out. More details on these studies can be found in [43,57,64,16].
The physical definition of the fair coin is completely lacking. One cannot expect the detailed characteristic to be general

for every coin asmany sizes and shapes of real coins exist.We consider that the coin is a rigid bodywith the round shape and
assume that the physical equivalence of the fair coin is an ideal coinwith uniform mass distribution and the equivalence of
the coin with bias is an imperfect coinwith nonuniformmass distribution. In both cases the coin has no intrinsic randomness
and what is relevant is the relation of the initial position (initial conditions) of the coin to the precision of the coin tosser.
One can assume that the equations of motion are Newton’s equations, with no external source of random influence,

i.e., the fluctuations of air, thermodynamic or quantum fluctuations of the coin, the coin tosser and the surface on which it
falls are negligible. Under these assumptions it is possible to construct a mapping of the initial conditions to a final observed
configuration. The initial conditions are position, configuration, momentum, and angular momentum at the beginning of
the motion. There are three possible final configurations: the coin terminates flat on the surface with its heads side up, its
tails side up, or the coin balances on its edge. The first two configurations are stable (using the definitions of [67,9] one can
call them stable point attractors). All initial conditions are mapped into one of the final configurations. The initial conditions
which are mapped onto heads configuration create heads basin of attraction while the initial conditions mapped onto tails
configuration create tails basin of attraction. The boundarywhich separates heads and tails basins consists of initial conditions
mapped onto the coin standing on the edge configuration. For an infinitely thin coin this set is a set of zero measure and
thus with probability one the coin ends up either heads or tails. For the finite thinness of the coin this measure is not zero
but the probability of edge configuration to be stable is low. In the paper [52] it is shown that an American 25 cents (nickel)
coin lands on the edge about one time in 6000 tosses. The problem of how a coin must be tossed to have probability 1/3 of
landing on the edge is discussed in [51].
As one can observe there is nothing nondeterministic in the described mapping, so the toss of the physical coin has

to be obviously nonrandom. From the point of view of the dynamical systems the outcome of the tossing coin should be
deterministic. As the initial conditions — final configuration mapping is strongly nonlinear one can expect deterministic
unpredictability due to the sensitive dependence on the initial conditions or fractal basin boundaries. In other words one
can pose the question, is anything chaotic in the dynamics of the tossed coin which can produce a random like behavior [19,56,5].
The detailed studies of the tossed coin dynamics started with the work of Keller [38]. His results can be summarized in

the following way. Consider an ideal coin and assume that the center of the mass which can move vertically is at the height
z(t) at time t . In addition to its vertical motion, the coin is assumed to be rotating about a horizontal axis that lies along the
diameter of the coin. Let x be the axis which is parallel to this rotation axis. One can describe the angular position of the coin
at time t by the angle ϑ(t) between the positive z axis and the normal to the side of the coin which is up at t = 0 (see Fig. 1).
When ϑ(0) = 0 the coin rotates with n0 revolutions per second (angular velocity ω0 = 2πn0).
If the initial velocity in the up direction z is v0, after t seconds, a coin tossed at the initial height z0 will be at the height

z0+v0t− (g/2)t2, where g is the acceleration due to the gravity. If the coin is caught when it returns to the initial height z0,
the elapsed time t∗ of the coin motion satisfies t∗ = 2v0/g , so the coin has revolved n = 2n0v0/g times. If n is between 2j
and 2j+1, where j = 0, 1, 2, . . . the initial side will be up-most and if n ∈ (2j+1, 2j+2) the opposite side will be up-most.
Fig. 2 shows the decomposition of the phase space (ω0/π, v0/g) into regions where the coin comes up as it started (black
regions) or opposite (white regions). These two regions are separated by the hyperbola 2n0v0/g = j (or

ω0
π

v0
g = j).

The coin bouncing on the landing surface has been analyzed by Vulović and Prange [67]. They assume an explicit
model of inelastic collisions that determines the coin’s eventual resting place. In the numerical studies they show that the
decomposition of the phase space (ω/π, vz/g) is remarkably similar to one shown in Fig. 2 but in the regions far from
zero the regions which determine the final side of the coin are narrower. More details about these studies will be given
in Section 5.2. In the study of Zeng-Yuan and Bin [71] both bouncing and air resistance have been considered but spin and
precession are not taken into account so that the obtained results are valid only for two degrees of freedom ideal coin. Finally
one should mention the work of Diaconis, Holmes and Montgomery [13] where the motion of the coin is considered in 3D
space. Their theoretical and experimental studies allow stating that the probability that the coin will rest on the side which
is up at the initial moment is larger than the probability of the other side and equal to 0.51.
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Fig. 1. Keller’s [38] coin tossing model (rotation around axis (ξ ) parallel to x).

Fig. 2. Decomposition of the phase space (ω0/π, v0/g) into regions where the coin comes up as it started (white regions) or opposite (dark regions) [38].

Our studies give arguments supporting the statement that the outcome of the coin tossing procedure is fully determined
by the initial conditions, i.e., no dynamical uncertainties due to the exponential divergence of initial conditions or fractal
basin boundaries have been identified. We analyze the dynamics of general 3D model of a coin. The cases of uniform and
nonuniform coins as well as the influence of air resistance and the impacts between the coin and surface are considered.
This paper is organized as follows. Section 2 presents the results of experimental observations of the tossed coin motion.

In Section 3 the coin, a round disk with nonuniform mass distribution is described as a rigid body. It is assumed that the
coin is released above a plain floor. Euler angles and Euler parameters (normalized quaternions) are used to describe the
orientation of the coin. A realistic mechanical model of the coin tossing is constructed in Section 4. It examines whether
the initial states leading to heads or tails are distributed uniformly in phase space. The outcome of one trial from the given
initial condition is determined via a following series of processes and conditions; (i) free fall process, i.e., the coin falls and
rotates during the motion over the floor, (ii) contact condition which determines the moment at which the coin touches
the floor, (iii) collision process (we assume that the force the coin receives from the floor is impulsive), (iv) stop condition
which determines the moment after which the outcome of tossing is determined. We derive the equations of motion for
the cases; (i) the imperfect coin, (ii) the ideal coin, (iii) the thin coin, (iv) 1D model of the coin. Section 5 shows numerical
results of the simulation of the dynamics in several cases; (i) after the free fall the coin collides with a soft surface, (ii) the
coin collideswith a flat smooth surface (no friction between the coin and the floor surface), (iii) the coin collideswith a rough
surface (friction between the coin and the surface), (iv) with air resistance during free fall. Our results are comparedwith the
results of Kechen [37], Mizuguchi and Suwashita [49] and Vulović and Prange [67] (Section 5.1). Section 5.2 presents basins
of attraction of heads and tails (sets of initial conditions leading to both outcomes) which are calculated. It is shown that the
boundaries between heads and tails domains are smooth. This allows us to state our main result that there exists an open set
of initial conditions for which the outcome of the coin tossing is predictable. In Section 5.3 we point out that although heads and
tails boundaries are smooth, the distance of a typical initial condition from a basin boundary is so small that practically any
uncertainty (not infinitely small) in initial conditions can lead to the uncertainty of the result of tossing. Finally in Section 6
we summarize our results pointing out that the outcome of the coin tossing process is determined by the initial state.
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Fig. 3. Behavior of the coin during the free fall.

2. Experimental observations

We perform some simple laboratory experiments that allow for monitoring of the coin motion. The speed camera
(Photron APX RSwith the film speed at 1500 frames per second) has been used to observe themotion of a coin.We observed
the tossing of two coins; a former Polish 1 zloty and a current British 2 pounds.
In the first experiment the coins have been released at the height of 186 cm by the special device which allows fixing the

coin orientation at the beginning of motion. Examples of the coin motion during the free fall without rotation are shown
in Fig. 3. In Fig. 3(a–c) at the initial moment the plane of the coin has been parallel to the floor and in Fig. 3(d–f) the angle
between this plane and a floor has been fixed to π/4. One can notice the coin orientation is maintained during the motion
and the side of the coin which has been up at the moment of release has not changed.
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Fig. 4. The precessing coin: vector of angular momentum ( EM), upward direction (z) and normal (ζ ) to the coin for: (a) ideal coin (γ = γ0 = const),
(b) imperfect coin (γ = γ (t)).

These experiments allow us to estimate the air resistance coefficients in normal and tangent directions (λn, λτ ). For the
former Polish 1 PLN coin these coefficients are equal respectively to λn = 0.8 and λτ = 0.2. For details on air resistance see
Section 4.2.
In other experiments (Figs. 5–7) we observe the coinmotionwith precession. The term precession is used to indicate that

the direction of the axis of rotation changes as the coin goes through its trajectory [13]. The idea of precession is described
in Fig. 4 where z indicates the upward direction, ζ is normal to the coin, EM is the angular momentum vector, and ωζ is the
angular velocity around axis ζ . (In the motions presented in Fig. 3(a–f) there is no precession.)
In the study [13] it has been shown that for the ideal coin the angle γ betweenM and the normal to the coin is constant.

One can see that if this angle is less than π/4 the coin never changes its face during the motion. The last observation allows
magician and gamblers to perform such controlled tosses so that despite the fact that the toss looks fair the outcome is
always determined.
In Figs. 5–7we present a gallery of pictures describing the behavior of the coin after impacts against the floor. In this case

the coin rotates around all possible axes, slides on the floor and can change its side during the motion between successive
collisions. Our observations suggest that the bouncing of the coin on the floor introduces sensitive dependence of the final
state (heads or tails) on the coin orientation at the moment of impact. The phenomena, which take place during the impacts
can play a major role in the determination of the outcome of the toss. Generally the coin bouncing on the floor is less fair
than the coin landing on the soft floor or caught in the hand.

3. Coin as a rigid body

A coin can be modeled as a rigid body, namely a cylinder with a radius r and height h as shown in Fig. 8. In the case of
an ideal coin the geometrical center of the cylinder B and the center of the mass C coincide (i.e., ξC = 0, ηC = 0, ζC = 0).
For the imperfect coin the center of the mass is located at a certain distance from the geometrical center B (ξC 6= 0 or/and
ηC 6= 0 or/and ζC 6= 0).
Any arbitrary position of a rigid body with respect to the fixed reference frame Oxyz (Fig. 10) can be described by a

combination of the position of the origin of the local reference frame x′y′z ′ and the orientation (angular position) of the
frame ξηζ . The local reference frame x′y′z ′ is rigidly attached to the body and its axes are parallel to the xyz frame and
ξηζ is the frame embedded and fixed in the body. It is convenient to choose the center of the mass (C) of the body or the
geometric center (B) of the body model as the origin of the local frames. An imperfect coin is in fact a nonsymmetric body.
Therefore to describe its motion we will use the geometric center (B) of the cylinder modeling the coin and the center of the
mass (C) of the coin.
We present two alternative descriptions of the rigid body orientations, i.e., Euler angles [46,20,18,14,70,62,4] and Euler

parameters [14,3]. If one uses Euler angles or similar conventions (known as Cardan angles and Tait–Bryan angles) in the
dynamic analysis of a rigid body then some difficulties (singularities) can appear in the numerical solutions of equations of
motion. The main advantage of Euler parameters (unit quaternions) is the lack of singularities in the numerical solutions of
equations of 3D motion of a body. The problem of the tossed coin that starts with initial rotations around its axes (ξ , η, ζ ) is
one of the examples of such problems. In our studies a special emphasis is put on the formulation of equations of motion in
quaternions.

3.1. Orientation of a rigid body

The orientation of a rigid body (orientation of a body embedded frame ξηζ ) with respect to the local reference frame
x′y′z ′ is described by [50,41,14,61]

r = R r′, (1)

where:
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Fig. 5. Gallery of pictures presenting the behavior of the coin (British 2 pounds) during the impacts with the floor.

r — is the vector of coordinates representing the position of an arbitrary point A (Fig. 9) of the body before its rotation (in
the initial position),

r′ — is the vector of coordinates of the same point of the body after its rotation (in the final position),
R — is the rotation matrix (representing the orientation of the local frame ξηζ , with respect to the frame x′y′z ′).
The inverse transformation is defined by

r′ = R−1 r = RT r. (2)

(R−1 is the inverse matrix of R, and R−1 = RT, whereas RT is the transpose matrix of R).
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Fig. 6. Gallery of pictures presenting the behavior of the coin (British 2 pounds) during the impacts with the floor — continuation.

ThematrixR can be expressed in differentways. Its form depends on coordinates that are chosen for the body orientation
description. The elements of the rotation matrix (R) are cosines of the angles between the axes of body reference frames
x′y′z ′ and ξηζ

R =

cos^(x′, ξ) cos^(x′, η) cos^(x′, ζ )
cos^(y′, ξ) cos^(y′, η) cos^(y′, ζ )
cos^(z ′, ξ) cos^(z ′, η) cos^(z ′, ζ )

 . (3)
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Fig. 7. Gallery of pictures presenting the behavior of the coin (British 2 pounds) during the impacts with the floor — continuation.

Fig. 8. 3D model of the imperfect coin.

Fig. 9. Point A position vectors: (a) in the initial position — Er, (b) in the final position — Er′ .

On the basis of the rotationmatrix (R) it is possible to define thematrix that contains the components of the body angular
velocity vector (or angular velocity tensor) (� = ṘRT), which is necessary in the dynamic analysis of the body. Matrix � is
obtained in the xyz reference frame. We use the symbol�ξ for the body angular velocity matrix defined by the components
in the body embedded frame ξηζ . This matrix is expressed as�ξ = RT�R.
To determine whether the face of the coin which was directed upwards in the initial position, is directed upwards at the

moment of the collisionwith the ground, it is necessary to determine the angle between z ′ and ζ axes. For the angles from the
range 〈−π/2, π/2〉 the chosen side (i.e. the face expressed by equation ζ = h/2 — say heads, or the face ζ = −h/2 — tails)
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Fig. 10. Initial position of a coin (a) and the rotation sequence: ϕ1 — around the ξ (b), ϕ2 — around the η (c), ϕ3 — around the ζ (d).

will be directed upwards. This corresponds to the following condition

cos^(z ′, ζ ) > 0. (4)

3.2. Euler angles and other conventions

In what follows, we adapt the conventions of [46,20,14,4] which are different from the ones used by [70]. Using Euler
angles (or any other from 12 possible conventions of specifying the relative orientation of a body) the rotation matrix R is
the composition of three consecutive rotations: ϕ1, ϕ2, ϕ3, around axes ξηζ of the frame embedded and fixed in the body

R = R1(ϕ1)R2(ϕ2)R3(ϕ3), (5)

whereas R1(ϕ1), R2(ϕ2), R3(ϕ3) are the matrices of successive rotations around ξ , η and ζ axes.
The definition of Euler angles is not unique. In works of various authors different sets of angles describe the body

orientations and other naming conventions for the same angles are used. These conventions depend on the axes about
which the rotations are carried out and on the rotation sequences. Basic definitions, names and expressions used in this
work are briefly presented below. For the rotation of the body of value ϕi around the ξ axis (Fig. 10) the rotation matrix has
the following form

Rξ (ϕi) =

[1 0 0
0 cosϕi − sinϕi
0 sinϕi cosϕi

]
. (6)

For the rotation of value ϕi around the η axis

Rη(ϕi) =

[ cosϕi 0 sinϕi
0 1 0

− sinϕi 0 cosϕi

]
. (7)

The rotation of value ϕi around the ζ axis leads to

Rζ (ϕi) =

[cosϕi − sinϕi 0
sinϕi cosϕi 0
0 0 1

]
. (8)

Depending on the order of rotations around the sequence of chosen axes there are 12 possible variants of this method of
determining the position of a body in space. Denoting the axes ξηζ of the body embedded frame by symbols 1, 2, 3 (ξ → 1,
η→ 2, ζ → 3), possible rotation sequences can be represented as: 121 (ξ -η-ξ ), 123 (ξ -η-ζ ), 131 (ξ -ζ -ξ ), 132 (ξ -ζ -η), 212
(η-ξ -η), 213 (η-ξ -ζ ), 231 (η-ζ -ξ ), 232 (η-ζ -η), 312 (ζ -ξ -η), 313 (ζ -ξ -ζ ), 321 (ζ -η-ξ ), 323 (ζ -η-ζ ).
Classical Euler angles are: ϕ1 = ψ , ϕ2 = ϑ , ϕ3 = ϕ, that indicate consecutively the rotations: by angle ϕ1 = ψ around

the ζ axis, by ϕ2 = ϑ around the new position of the ξ axis, and by ϕ3 = ϕ around the ζ (rotation sequence is abbreviated
as ζ -ξ -ζ or 313). The rotation matrix R for such angles is obtained by substituting the following rotational matrices to
formula (5):

R1(ϕ1) = Rζ (ψ), R2(ϕ2) = Rξ (ϑ), R3(ϕ3) = Rζ (ϕ), (9)
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Table 1
Singularity condition in the numerical analysis of the rigid body dynamics (k = 0, 1, . . .)

Rotation sequence Singularity condition Angle indicating singularity

121 − sinϕ2 = 0 ϕ2 = ±kπ
123 cosϕ2 = 0 ϕ2 = ± kπ
131 − sinϕ2 = 0 ϕ2 = ±kπ
132 − cosϕ2 = 0 ϕ2 = ± kπ
212 − sinϕ2 = 0 ϕ2 = ±kπ
213 − cosϕ2 = 0 ϕ2 = ± kπ
231 cosϕ2 = 0 ϕ2 = ± kπ
232 − sinϕ2 = 0 ϕ2 = ±kπ
312 cosϕ2 = 0 ϕ2 = ± kπ
313 − sinϕ2 = 0 ϕ2 = ±kπ
321 − cosϕ2 = 0 ϕ2 = ± kπ
323 − sinϕ2 = 0 ϕ2 = ±kπ

that means

R = Rζ (ψ)Rξ (ϑ)Rζ (ϕ). (10)

In Table 1 the set of 12 possible rotation sequences as well as the singularity condition for each case and values of angles
causing singularities in numerical solutions is presented. These singularities arise in the inversion process of the matrix B,
which is used to calculate the generalized velocities q̇ on the basis of body angular velocity ω (q̇ = B−1ω).

3.3. Euler parameters

An alternative to Euler angles and similar conventions of body orientation description are Euler parameters (also called
Euler symmetric parameters and known in mathematics as normalized quaternions) [14,54,3]. They are very useful in
representing the rotations due to some advantages in comparison to other representations. The main advantage of Euler
parameters is that they do not produce any singularities in numerical solutions of body motion equations.
In the matrix notation Euler parameters are represented by the column matrix

p =

e0e1e2
e3

 =


cos
φ

2
v1 sin

φ

2

v2 sin
φ

2

v3 sin
φ

2


, (11)

or, shortly

p =
[
e0
e

]
=

 cos φ2
v sin

φ

2

 . (12)

The basis of this method of body orientation description is well known as the Euler theorem stating that any rotation of
the rigid body can be expressed as a single rotation about some axis. The axis can be represented by a 3D vector Ev (Fig. 11).
The vector Ev is a unit vector and it remains unchanged during the body rotation. The rotation angle φ is a scalar value.
The rotation matrix (3) can be expressed by Euler parameters as [54]

R = (2e20 − 1)I+ 2ee
T
+ 2e0E, (13)

in which I is the identity matrix of dimensions (3× 3), and the matrix E has the form

E =

[ 0 −e3 e2
e3 0 −e1
−e2 e1 0

]
. (14)

The expanded form of the matrix R – expressed by unit quaternions (e0, . . . , e3) – has the following form (13)

R =

−1+ 2e20 + 2e21 2e1e2 − 2e0e3 2e0e2 + 2e1e3
2e1e2 + 2e0e3 −1+ 2e20 + 2e

2
2 −2e0e1 + 2e2e3

−2e0e2 + 2e1e3 2e0e1 + 2e2e3 −1+ 2e20 + 2e
2
3

 . (15)
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Fig. 11. The coin rotation by φ — around the vector Ev.

The antisymmetric matrix�ξ (Ωξ = RTṘ) containing scalar components of the coin angular velocity vector – in the body
embedded frame ξηζ – has the form

�ξ = 2

[0 −ė3e0 + ė2e1 − ė1e2 + ė0e3 ė2e0 + ė3e1 − ė0e2 − ė1e3
0 −ė1e0 + ė0e1 + ė3e2 − ė2e3

asym. 0

]
. (16)

The angular velocity vector of the coin ωξ in the body embedded frame ξηζ is expressed by the column matrix

ωξ =

[
ωξ
ωη
ωζ

]
= 2

[ė1e0 − ė0e1 − ė3e2 + ė2e3
ė2e0 + ė3e1 − ė0e2 − ė1e3
ė3e0 − ė2e1 + ė1e2 − ė0e3

]
, (17)

whereas

ω̇ξ =

[
ω̇ξ
ω̇η
ω̇ζ

]
= 2

[
−e1ë0 + e0ë1 + e3ë2 − e2ë3
−e2ë0 − e3ë1 + e0ë2 + e1ë3
−e3ë0 + e2ë1 − e1ë2 + e0ë3

]
. (18)

The column matrix containing xyz scalar components of the coin angular velocity vector (i.e. the components in fixed
spatial frame) has the form

ω =

[
ωx
ωy
ωz

]
= 2

[ė1e0 − ė0e1 + ė3e2 − ė2e3
ė2e0 − ė3e1 − ė0e2 + ė1e3
ė3e0 + ė2e1 − ė1e2 − ė0e3

]
. (19)

Using Euler parameters allows avoiding singularities in numerical solutions of body rotation problems. The coin dynamics
is one of such problems. The equations of coin dynamics are presented in the following sections. Special attention is paid to
the body dynamics description in quaternions.

4. The dynamics of a tossed coin

In our studies we consider the following motion of the coin. We assume that the coin is thrown at the height z0 (the
mass center initial position vector r(t=0) = [ x0 y0 z0 ]T, coin initial orientation ψ(t=0) = [ ψ0 θ0 ϕ0 ]

T with the initial
angular velocity ωξ (t=0) = [ ωξ0 ωη0 ωζ0 ]

T and the mass center initial velocity vC (t=0) = [ ẋ0 ẏ0 ż0 ]T. After a free fall
when the z coordinate of one of coin points is equal to zero, say zD = 0 the coin collides with the horizontal base (floor).
It is assumed that at the collision a portion of the coin energy is dissipated, i.e., the collision is described by the restitution
coefficient χ < 1. After the collision, the coin mass center moves to the height z1 in which the total mechanical energy of
the coin E = T + V is equal its total energy in the moment after the collision E ′ = T ′ + V ′. (In the case when air resistance
is taken into account total mechanical energy of the coin at height z1 is less then its value after the collision E < E ′.) Next,
the coin moves on until it collides with the floor again. The calculations are terminated when after the nth collision the total
mechanical energy of the coin E = T + V is smaller than the potential energy at the coin center level equal to its radius r ,
i.e E < mgr , as this condition disables the change of the coin face during the further motion. The no-turning-over condition
E < mgr can be modified in particular cases of the coin–base collision model. For example, for symmetric, perfectly smooth
– frictionless – coin and base the condition is E(z, ż, ωξ , ωη) < mgr , which means that only the part of kinetic energy is
taken into account i.e. the term 1

2 Jζωζ
2 is neglected. This improved criterion has the form

T + V −
1
2
(mẋ2 +mẏ2 + Jζωζ 2) < mgr. (20)

We derive the equations of motion for the cases of imperfect and ideal coins, i.e. the equations describing the motion of 3D
rigid body in the 3D space for nonsymmetric and symmetric bodies. Additionally the simplifiedmodels of 2D coin (thin disk,
h = 0) in the space motion, and 1D coin model — disk performing planar motion in the vertical plane are considered. (It
should be mentioned here that our 1D model in [67,49] was called the 2D one.)
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4.1. Free fall

The rigid body dynamics equations can be expressed as two equations in the matrix form that describe:

– the acceleration of the body mass center (and its position)

MaC = f, (21)

– the changes of the body angular velocity (and in the body orientation)

JC ω̇ξ +Ωξ JCωξ = mC . (22)

In thementioned equationsM is themassmatrix of coin (M = diag [m m m]), aC is the vector (columnmatrix) of the body
mass center (the point C) absolute acceleration, f contains the components of the body force vector, JC is the body moment
of inertia matrix (determined with respect to the body embedded frame ξCηCζC ), ωξ and �ξ are the body angular velocity
vector in the form of the columnmatrix and antisymmetric matrix, andmC is the columnmatrix of external force moments
with respect to the mass center C .
The columnmatrices aC and f are expressed by vector components with respect to the fixed frame (xyz): aC = [ ẍ ÿ z̈]T,

f = [ fx fy fz]T. On the other hand, it is more convenient to describe the rotations of the body (Eq. (22)) by their components
with respect to the body embedded frame (ξηζ ).
Eqs. (21) and (22) are general equations of motion and are suitable for the dynamics analysis of any body i.e. a

nonsymmetric and nonhomogeneous body. In the case in which the forces f are independent of the angular velocity of
the body and momentsmC are not the functions of the center of mass accelerations Eqs. (21) and (22) are uncoupled. This
happens when air resistance is neglected.
In the case of a cylinder shaped coin (or modeled by the cylindrical body) of homogeneous material its center of mass

(point C) is situated in the geometrical center of the cylinder (in point B). The body embedded frame axes (ξ , η, ζ ) are the
axes passing through the center of the mass. As the products of inertia are zeros these axes are the central axes, and the
inertia matrix of the coin (JC ) is a diagonal matrix.
For an imperfect (nonsymmetric or nonhomogeneous) coin the points B and C are not overlapping. For such a case, it can

be more convenient to use the following form of body dynamics equations:

M(aB + Ω̇rC +ΩΩrC ) = f, (23)
JBω̇ξ +Ωξ JBωξ +MRCaB = mB, (24)

where: aB denotes the point B absolute acceleration, rC and RC include coordinates of the vector ErC , describing the position
of mass center (C) with respect to the origin B, JB is the bodymoment of inertia matrix (determined with respect to the body
embedded frame ξBηBζB — parallel to the ξηζ and with origin in B), andmB is the body force moment with respect to the
point B. In the general case, for a nonsymmetric or nonhomogeneous coin, the matrix JB will not be diagonal, because the
axes Bξ , Bη, Bζ will not be principal axes (some nonzero inertia products in JB will appear).
Unlike (21) and (22) Eqs. (23) and (24) are coupled equations.
The scalar form of body dynamics equations obtained from the general equations (21) and (22) can be written in the

well-known form of the Newton–Euler equations:

m ẍ = fx, m ÿ = fy, m z̈ = fz, (25)

and

Jξ ω̇ξ +
(
Jζ − Jη

)
ωηωζ − Jξζ ω̇ζ − Jξηω̇η + Jηζ

(
ωζ
2
− ωη

2)
+
(
Jξηωζ − Jξζωη

)
ωξ = Mξ , (26)

Jηω̇η +
(
Jξ − Jζ

)
ωξωζ − Jξηω̇ξ − Jηζ ω̇ζ + Jξζ

(
ωξ
2
− ωζ

2)
+
(
Jηζωξ − Jξηωζ

)
ωη = Mη, (27)

Jζ ω̇ζ +
(
Jη − Jξ

)
ωξωη − Jηζ ω̇η − Jξζ ω̇ξ + Jξη

(
ωη
2
− ωξ

2)
+
(
Jξζωη − Jηζωξ

)
ωζ = Mζ . (28)

(The moments of inertia in this case are determined with respect to the body embedded frame ξηζ with the origin in the
mass center.)
Expressing ωξ , ωη , ωζ in terms of Euler angles (ϕ, ϑ , ψ) or in normalized quaternions (e0, e1, e2, e3) one can obtain the

motion equations in the chosen coordinates.
The full equations of motion for the cases of (i) imperfect, (ii) ideal 3D coin as well as for (iii) two- and (iv) 1D coinmodels

are shown below. In all equations Euler parameters (normalized quaternions) have been applied.
(i) Equations of motion of imperfect coin.
The first three scalar equations obtained from the general equation (21) are common for all coin models:

m ẍ = fx, m ÿ = fy, m z̈ = fz . (29)

If the air resistance of a coin is taken into account then all force components ( fx, fy, fz) have nonzero values. (Air resistance
forces and their moments are derived in the next section.) In the case of free fall of a body the component fz is the only force
acting on the coin ( fzg = −mg).
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The equations describing the changes in the spatial orientation of the coin obtained from (22), expressed in Euler
parameters, have the following form:

2
(
(−e1ė0 + e0ė1 + e3ė2 − e2ė3)

(
2Jξη (−e3ė0 + e2ė1 − e1ė2 + e0ė3)+ 2Jξζ (e2ė0 + e3ė1 − e0ė2 − e1ė3)

)
+ (−e3ė0 + e2ė1 − e1ė2 + e0ė3)

(
2Jηζ (−e3ė0 + e2ė1 − e1ė2 + e0ė3)+ 2Jζ (−e2ė0 − e3ė1 + e0ė2 + e1ė3)

)
− (−e2ė0 − e3ė1 + e0ė2 + e1ė3)

(
2Jη (−e3ė0 + e2ė1 − e1ė2 + e0ė3)+ 2Jηζ (−e2ė0 − e3ė1 + e0ė2 + e1ė3)

)
+ Jξζ (e3ë0 − e2ë1 + e1ë2 − e0ë3)+ Jξη (e2ë0 + e3ë1 − e0ë2 − e1ë3)+ Jξ (−e1ë0 + e0ë1 + e3ë2 − e2ë3)

)
= Mξ ,

(30)
4Jζ (e3ė0 − e2ė1 + e1ė2 − e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)
+ 4Jξ (−e3ė0 + e2ė1 − e1ė2 + e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)
+ 4Jηζ (e2ė0 + e3ė1 − e0ė2 − e1ė3) (e1ė0 − e0ė1 − e3ė2 + e2ė3)

+ Jξζ
(
−4 (e3ė0 − e2ė1 + e1ė2 − e0ė3)2 + 4 (e1ė0 − e0ė1 − e3ė2 + e2ė3)2

)
+ 2Jηζ (e3ë0 − e2ë1 + e1ë2 − e0ë3)

+ 2Jη (−e2ë0 − e3ë1 + e0ë2 + e1ë3)− 2Jξη (2 (e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3)

− e1ë0 + e0ë1 + e3ë2 − e2ë3) = Mη, (31)

2
(
(−e2ė0 − e3ė1 + e0ė2 + e1ė3)

(
2Jξη (−e2ė0 − e3ė1 + e0ė2 + e1ė3)+ 2Jη (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

)
− (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

(
2Jξ (−e2ė0 − e3ė1 + e0ė2 + e1ė3)+ 2Jξη (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

)
+ (−e3ė0 + e2ė1 − e1ė2 + e0ė3)

(
2Jξζ (−e2ė0 − e3ė1 + e0ė2 + e1ė3)+ 2Jηζ (e1ė0 − e0ė1 − e3ė2 + e2ė3)

)
+ Jζ (−e3ë0 + e2ë1 − e1ë2 + e0ë3)+ Jηζ (e2ë0 + e3ë1 − e0ë2 − e1ë3)+ Jξζ (e1ë0 − e0ë1 − e3ë2 + e2ë3)

)
= Mζ .

(32)

The right-hand-side quantities (Mξ , Mη , Mζ ) denote the moments of air resistance forces with respect to the body
embedded axes (central axes Cξ , Cη, Cζ ). The formulae defining these moments for 3D imperfect coin model in the general
form (mC = [Mξ Mη Mζ ]T) as well as for particular coin models are presented in Section 4.2.
The additional equation that has to be satisfied in the case when Euler parameters are used as coordinates takes the

following form:

ė20 + ė
2
1 + ė

2
2 + ė

2
3 + e0ë0 + e1ë1 + e2ë2 + e3ë3 = 0. (33)

(ii) Equations of motion of an ideal coin.
The equations describing the changes in the spatial orientation of the symmetrical coin obtained from (30)–(32) for

Jξ = Jη = m r2
4 +

mh2
12 , Jζ =

m r2
2 and Jξη = Jηζ = Jζ ξ = 0, expressed with Euler parameters, are as follows:

2
(
mr2 (e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3)

−
1
6
m
(
h2 + 3r2

)
(e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3)

−
1
12
m
(
h2 + 3r2

)
(e1ë0 − e0ë1 − e3ë2 + e2ë3)

)
= Mξ , (34)

1
6
m
(
12r2 (e3ė0 − e2ė1 + e1ė2 − e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

+ 2
(
h2 + 3r2

)
(e3ė0 − e2ė1 + e1ė2 − e0ė3) (e1ė0 − e0ė1 − e3ė2 + e2ė3)

−
(
h2 + 3r2

)
(e2ë0 + e3ë1 − e0ë2 − e1ë3)

)
= Mη, (35)

1
3
m
((
h2 + 3r2

)
(e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3)

+
(
h2 + 3r2

)
(e2ė0 + e3ė1 − e0ė2 − e1ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

+ 3r2 (−e3ë0 + e2ë1 − e1ë2 + e0ë3)
)
= Mζ . (36)

(iii) Equations of a 2D coin model.
For the 2D (h = 0) imperfect coin model the products of inertia Jηζ = 0 and Jζ ξ = 0 are used in (30)–(32). Only one

off-diagonal element of a coin inertia matrix remains nonzero (Jξη 6= 0). After these substitutions:

2
(
2Jζ (−e3ė0 + e2ė1 − e1ė2 + e0ė3) (−e2ė0 − e3ė1 + e0ė2 + e1ė3)
− 2Jη (−e3ė0 + e2ė1 − e1ė2 + e0ė3) (−e2ė0 − e3ė1 + e0ė2 + e1ė3)
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Fig. 12. 1D coin models (yz projection): (a) an imperfect coin, (b) an ideal coin.

+ 2Jξη (−e3ė0 + e2ė1 − e1ė2 + e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

+ Jξη (e2ë0 + e3ë1 − e0ë2 − e1ë3)+ Jξ (−e1ë0 + e0ë1 + e3ë2 − e2ë3)
)
= Mξ , (37)

4Jζ (e3ė0 − e2ė1 + e1ė2 − e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)
+ 4Jξ (−e3ė0 + e2ė1 − e1ė2 + e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)+ 2Jη (−e2ë0 − e3ë1 + e0ë2 + e1ë3)

− 2Jξη (2 (e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3) −e1ë0 + e0ë1 + e3ë2 − e2ë3) = Mη, (38)

4Jη (e3ė0 − e2ė1 + e1ė2 − e0ė3) (e2ė0 + e3ė1 − e0ė2 − e1ė3)+ 4Jξη (e2ė0 + e3ė1 − e0ė2 − e1ė3)2

+ 4Jξη (e3ė0 − e2ė1 + e1ė2 − e0ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)

+ 4Jξ (e2ė0 + e3ė1 − e0ė2 − e1ė3) (−e1ė0 + e0ė1 + e3ė2 − e2ė3)+ 2Jζ (−e3ë0 + e2ë1 − e1ë2 + e0ë3) = Mζ . (39)

(iv) Equations of a 1D coin model.
Let us assume that the coin is thin (h = 0, Jξζ = Jηζ = 0), it rotates only around the ξ axis (ωη = ωζ = 0 and

ω̇η = ω̇ζ = 0), which means that ξ remains horizontal during motion. In this case one obtains a 1D model of the coin
shown in Fig. 6 and general equations (29)–(32) can be simplified as follows:

m ẍ = fx, m ÿ = fy, m z̈ = fz, (40)

2Jξ (−e1ë0 + e0ë1 + e3ë2 − e2ë3) = Mξ , (41)

−2Jξη(−e1ë0 + e0ë1 + e3ë2 − e2ë3) = Mη, (42)

−4Jξη (e1ė0 − e0ė1 − e3ė2 + e2ė3)2 = Mζ . (43)

It is possible to show that the last three equations are identical with: Jξ ϑ̈ = Mξ ,−Jξηϑ̈ = Mη , 0 = Mζ , i.e. with the dynamic
equations describing rotations of a rigid body (Jξζ = Jηζ = 0) in plane motion — expressed in rotation angle ϑ (one of the
Euler angles). In this case the body rotates by ϑ about the ξ axis parallel to xwhich means that the rotation angle φ is equal
to ϑ (φ = ϑ) and the unit vector Ev has the x axis direction (v1 = 1, v2 = 0, v3 = 0). Euler parameters (11) are as follows:

p =

e0e1e2
e3

 =

cos

ϑ

2
v1 sin

ϑ

2
0
0

 . (44)

Substituting e0 = cos ϑ2 , e1 = sin
ϑ
2 , e2 = e3 = 0 in (41)–(43) leads to

−e1ë0 + e0ë1 + e3ë2 − e2ë3 =
ϑ̈

2

(
sin2

ϑ

2
+ cos2

ϑ

2

)
=
ϑ̈

2
, (45)

e1ė0 − e0ė1 − e3ė2 + e2ė3 = −
ϑ̇

2

(
sin2

ϑ

2
+ cos2

ϑ

2

)
= −

ϑ̇

2
, (46)

hence

Jξ ϑ̈ = Mξ , −Jξηϑ̈ = Mη, −Jξηϑ̇2 = Mζ . (47)

In Fig. 12 1D models of an imperfect coin and an ideal coin are shown.
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Assuming that the coin is symmetric with respect to the ηζ plane (Jξη = 0) we find the dynamic equations of the plane
motion of the coin in the form:

m ẍ = fx, m ÿ = fy, m z̈ = fz
Jξ ϑ̈ = Mξ , 0 = Mη, 0 = Mζ .

(48)

It should be mentioned here that although in a 1D model the coin reminds us of a bar (as in Fig. 12) in Eq. (48) one has
to consider the moment of inertia for cylinder or disk, i.e., Jξ = m r2

4 +
mh2
12 or Jη =

m r2
4 . Considering bar moment of inertia

Jξ = Jη = m l2
12 in Eq. (48) one solves the problem of the plane motion of the bar [67,49]. Such models can be used in the

discussion of the mechanical randomizers but cannot be used as models of a tossed coin.

4.2. Forces and moments due to the air resistance

To define the right-hand sides of Eqs. (21)–(22), and (23)–(24) the components of the forces acting on the body and
moments of these forces with respect to the Bξηζ frame axis should be determined.
The determination of the air resistance forces acting on the coin is cumbersome due to its variable velocity and a change

in the Reynolds number (Re = 2rv
ν
) that follows during the toss [44]. A range of changes in the Reynolds number is wide

because of variations in the coin velocity: Re � 1 in the initial stage of its motion (during its fall with a zero initial velocity),
Re ∼= 104 at the velocity of the mass center v = 10 m/s and the coin radius r = 0.01 m.
For detailed information on the aerodynamics and fluid mechanics pertinent to this section, see [42,47,66,69].
A cylindrical model of the coin with a base radius r and a height h, performing a general motion, is subject to analysis. On

the basis of kinematic relations for a rigid body, a distribution of velocities on outer surfaces of the cylinder is determined.
It has been assumed that the air resistance occurs only on this part of the cylinder surface on which the velocity vectors
of its points have a sense compliant with the normal vector to this surface and directed outwards from the body. The air
resistance force vector fr is determined on the base as a sum of resistance forces on both the cylinder base planes (f1 i f2)
and resistance forces on the lateral surface (f3):

fr = f1 + f2 + f3. (49)

The vector f1 denotes the resistance forces occurring on one plane of the coin (ζ = − h2 ), whereas f2 stands for the
resistance forces on the second plane (ζ = − h2 ). Each of the vectors f1, f2 and f3 is treated as a sum of two components
originating from tangential (parallel) and normal (perpendicular) forces to the body surface. This results in the necessity of
using various air resistance coefficients λτ for the forces fiτ (of the tangential direction (air friction forces)) and λn for the
forces fin in the normal direction (air pressure forces). Hence:

fi = fiτ + fin, (i = 1, 2, 3), (50)

where f1τ and f2τ are determined from the relation

fiτ = −λτ
∫ r

0

(∫ 2π

0
|vAiτ |

b vAiτ ρdθ
)
dρ, (i = 1, 2), (51)

fin = −λn
∫ r

0

(∫ 2π

0
|vAin|

b vAin si ρdθ
)
dρ, (i = 1, 2), (52)

and f1n and f2n are defined by:

f3τ = −λτ
∫ h/2

−h/2

(∫ 2π

0
|vA3τ |

b vA3τ rdθ
)
dz, (53)

f3n = −λn
∫ h/2

−h/2

(∫ 2π

0
|vA3n|

b vA3ns3 rdθ
)
dz. (54)

The symbols used in formulae (51)–(54) denote, respectively: r radius of the coin, vAiτ vector comprising the velocity
components tangential to the surface onwhich the point Ai is situated, and vAin vector of velocity components perpendicular
to this surface, |vAiτ | and |vAin| refer to the values of velocity vectors, and b is a real number that belongs to the range 〈0, 1〉
(for b = 0, the air resistance is linearly dependent on velocity, whereas for b = 1, resistance depends on the square of
velocity). The functions si that occur in formula (52) are described by the following relation:

si =
1
2
sgn(vTAinη

o
i )
(
1+ sgn(vTAinη

o
i )
)
, (i = 1, 2, 3), (55)

where ηoi are unit vectors, normal to the coin surfaces under consideration, directed outwards from the coin (Fig. 13). The
vectors ηoi in the xyz frame are defined as:

ηoi = Rηi, (i = 1, 2, 3), (56)
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where

η1 =

[0
0
1

]
, η2 =

[0
0
−1

]
, η3 =

[cos θ
sin θ
0

]
. (57)

The functions si allow for the determination of regions in which the air resistance components normal to the surface act.
It has been assumed that normal components of resistance forces do not occur in these regions where the velocity vector
of points situated on the surface is directed inwards the body. The air resistance forces perpendicular to the body surface
occur in these body points in which the following condition is satisfied:

vTAinη
o
i > 0, (i = 1, 2, 3). (58)

The effect of application of the functions si is illustrated in Fig. 14.
(i) The velocity fields on the coin surfaces.
The symbol vA1 denotes a columnmatrix that includes the coordinates of the velocity vector of the point A1, that is to say,

of an arbitrary point situated on the plane ζ = h
2 (Fig. 13). The components of this vector along the normal direction to the

surface are represented by thematrix vector vA1n, whereas vA1τ includes the velocity components of the tangential direction
to the surface point A1 is situated on. The tangential and normal components are determined from the relationship:

vA1n = RH1RTvA1 , vA1τ = vA1 − vA1n, (59)

where

vA1 = vB +ΩrBA1 , vB = vC +ΩrCB, vC = [ ẋ ẏ ż ]T,
rBA1 = Rρ1, rCB = −RρBC ,

ρ1 =

[
ρ cos θ ρ sin θ

h
2

]T
, ρBC = [ ξC ηC ζC ]

T,

(60)

where R is a transformation matrix of the coordinates from the frame ξηζ into the frame xyz, and H1 is a zero-one matrix
in the form:

H1 =

[0 0 0
0 0 0
0 0 1

]
. (61)

To avoid misunderstanding, let us add that the vectors vA1 , vB, vC , rBA1 , rCB, vA1n, vA1τ are defined by the coordinates in the
xyz frame, thematrixΩ is defined in the xyz frame, and the vectors ρ1, ρBC are determined by the coordinates in themoving
frame ξηζ . After the transformations that follow from formulae (59) and (60), the expressions that define the components
of velocity of individual points lying on the body surface are obtained.
Similarly as for the plane ζ = h

2 , the tangential and normal components of the velocity vA2 of the point A2 lying on the
plane ζ = − h2 (Fig. 13) are determined:

vA2n = RH1RTvA2 , vA2τ = vA2 − vA2n, vA2 = vB +Ω rBA2 ,

rBA2 = Rρ2, ρ2 =

[
ρ cos θ ρ sin θ −

h
2

]T
.

(62)

The symbols vA3n, vA3τ denote the components of velocity of the point (A3) lying on the lateral surface of the cylinder that
are determined on the basis of the following relation:

vA3n = RRθH3RTθR
TvA3 , vA3τ = vA3 − vA3n,

vA3 = vB +Ω rBA3 , rBA3 = Rρ3,
(63)

where ρ3 is a vector that defines the position of this point in the frame ξηζ :

ρ3 = [ r cos θ r sin θ z ]T, (64)

and the matrix H3 has the form as follows:

H3 =

[1 0 0
0 0 0
0 0 0

]
. (65)

Some sample results of the calculations of velocity of points lying on the coin surfaces and the effect of application of the
functions s1, s2 and s3 are presented in Fig. 14. The employment of these functions in the calculation procedures allows for
the determination of the regions where the components of resistance forces normal to each surface act. The components
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Fig. 13. Quantities used to determine of air resistance forces f1 , f2 and f3 (unit vectors of coin planes: ηo1 , η
o
2 and cylindrical outer surface η

o
3).

Fig. 14. Velocity vectors of points lying on the coin surfaces: (a) total velocities, (b) velocities with senses directed outwards from the body, (c) normal
components with senses directed outwards from the body, (d) tangential components of total velocities.

of air resistance forces tangential to the body surfaces are determined on the whole outer surface of the body. The normal
components of resistance forces occur in those regions only where the velocity vector of points lying on the surface is
directed outwards from the body (in Fig. 14b and c, the velocity vectors with senses directed inwards the body are shown
as points).
(ii) Air resistance forces.
The distribution of air resistance forces corresponds to the velocity distributions of points situated on outer surfaces of

the coin. On the assumption that the resistance forces are proportional to velocity (that is to say, after the substitution of
b = 1 in the formulae describing resistance forces), the distribution of forces normal to individual coin surfaces is such as
in Fig. 14c, and the distribution of tangential forces complies with Fig. 14d (the senses of resistance forces are opposite to
the senses of the velocity vectors). On the basis of formulae (51) and (52), the resultant of the resistance forces acting on the
first coin surface (including the point A1 (Fig. 13)) is described as:

f1 = −λn
∫ r

0

(∫ 2π

0
|vA1n|

bvA1ns1ρdθ
)
dρ − λτ

∫ r

0

(∫ 2π

0
|vA1τ |

bvA1τρdθ
)
dρ. (66)

As has been mentioned before, the function s1 allows for a selection of regions in which the resistance forces
perpendicular to the body surface occur and it is given by the formula:

s1 =
1
2
sgn(vTA1nη

o
1)
(
1+ sgn(vTA1nη

o
1)
)
. (67)
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In a similar way, the resistance forces occurring on the second surface (ζ = − h2 ), where the point A2 is situated (Fig. 13),
are determined:

f2 = −λn
∫ r

0

(∫ 2π

0
|vA2n|

bvA2n s2ρdθ
)
dρ − λτ

∫ r

0

(∫ 2π

0
|vA2τ |

bvA2τρdθ
)
dρ, (68)

where the function s2 is given by:

s2 =
1
2
sgn(vTA2nη

o
2)
(
1+ sgn(vTA2nη

o
2)
)
, (69)

where ηo2 is a unit vector, normal to the coin surface (ζ = −
h
2 ) and directed outwards from the coin (Fig. 13). The air

resistance force (f3) arising on the lateral side of the cylinder is determined as:

f3 = −λn
∫ h/2

−h/2

(∫ 2π

0
|vA3n|

b vA3n s3, rdθ
)
dz − λτ

∫ h/2

−h/2

(∫ 2π

0
|vA3τ |

b vA3τ r dθ
)
dz. (70)

Function s3 takes the form

s3 =
1
2
sgn(vTA3nη

o
3)
(
1+ sgn(vTA3nη

o
3)
)
, (71)

where ηo3 is a unit vector, normal to the cylindrical surface of the coin and directed outwards from the coin.
The distribution of the air resistance forces corresponds to the velocity distributions of points situated on outer surfaces

of the coin. On the assumption that the resistance forces are proportional to velocity (that is to say, after the substitution of
b = 1 in the formulae describing the resistance forces), the distribution of forces normal to individual coin surfaces is such
as in Fig. 14c, and the distribution of tangential forces complies with Fig. 14d (the senses of resistance forces are opposite
to the senses of velocity vectors). The resultant vectors of tangential forces to each surface can be presented in an explicit
(analytical) form.
The resultant vector of the resistance forces f1n, normal to the plane ζ = h

2 , is determined on the basis of (66) as

f1n = −λn
∫ r
0

(∫ 2π
0 |vA1n|

b vA1n s1ρ dϕ
)
dρ. As in the integrated expression, a selection function of the velocity s1 occurs,

the calculations are conducted numerically for the given numerical data. The numerical calculations are carried out for the
discrete velocity field of points lying on the body surface. The integration is performed in these regions only where the
velocities of the points (vA1n) are directed outwards from the body (Fig. 14c).
Similarly, the resultant vectors of the forces f2n, f3n are determined numerically, and the vectors f2τ , f3τ are determined

explicitly.
(iii) Moments of air resistance forces.
After the determination of forces, the moments of these forces with respect to the center of the mass C (or the chosen

pole B) should be determined. The total moment of air resistance forces with respect to the point B has been presented as a
sum of the moments (m1 andm2) originating from resistance forces on both planes of the cylinder base and the moments
of resistance forces on the lateral surface (m3):

mrB = m1 +m2 +m3, (72)

wherem1 andm2are determined from the formula (73) (for i = 1, 2)

mi = −λn
∫ r

0

(∫ 2π

0
|vAin|

b RTRBAivAin si ρdθ
)
dρ − λτ

∫ r

0

(∫ 2π

0
|vAiτ |

b RTRBAivAiτ ρdθ
)
dρ, (73)

whereasm3 is expressed by the relation:

m3 = −λn
∫ h/2

−h/2

(∫ 2π

0
|vA3n|

b RTRBA3vA3n s3 rdθ
)
dz − λτ

∫ h/2

−h/2

(∫ 2π

0
|vA3τ |

b RTRBA3vA3τ rdθ
)
dz, (74)

where RBA1 , RBA2 , and RBA3 in formulae (73) and (74) denote antisymmetrical matrices including the components of the
vectors rBA1 (60), rBA2 (62) and rBA3 (63), respectively, that can be expressed symbolically as RBA1 = r̃BA1 , RBA2 = r̃BA2 ,
RBA3 = r̃BA3 .
Only the tangent components of resultant moment of air resistance forces mrB are determined explicitly. The normal

components are calculated numerically after the discretization of actual velocity field on the coin body.
(iv) Simplified model of coin–air interaction.
If the thickness of the coin h is negligible in comparison to its radius r , then it can be assumed that h→ 0 (or h = 0) in

the computational model. Thus, the formulae generated in the previous subsection can be employed after the substitution
of h = 0.
In this subsection, we show how the formulae that describe air resistance for a simplified 2D model of the coin can be

derived from the general relationships. In this way the relations that define not only the resultant of the air resistance forces
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Fig. 15. Velocity vectors of points situated on the surfaces of the 2D coin model: (a) normal velocity components with senses outwards from the body,
(b) tangential components of total velocities.

tangential to the coin surface, but also the resultant of normal forces can be determined explicitly. For a thin coin (h = 0),
the velocities of points situated on both planes are identical:

vA1 = vA2 , vA1τ = vA2τ , vA1n = vA2n. (75)

After the calculations in which the general relations (59) and (60) have been used, the normal components of velocity
(for h = 0 and ζC = 0) are obtained in the explicit form. The velocity vectors of points situated on both planes of the 2D
coin model have been depicted in Fig. 15.
(vi) Resistance forces for thin coin.
While determining a sum of normal components of the resistance forces (f1n + f2n), acting on the planes at both sides of

the coin, we obtain on the basis of (52):

f1n + f2n = −λn1
∫ r

0

(∫ 2π

0
|vA1n|

bvA1n s1 ρdθ
)
dρ − λn2

∫ r

0

(∫ 2π

0
|vA2n|

bvA2n s2 ρdθ
)
dρ. (76)

On the assumption that the coefficients λn1 and λn2 are identical (λn1 = λn2 = λn), relation (76) can be expressed as:

f1n + f2n = −λn
∫ r

0

(∫ 2π

0
|vA1n|

bvA1n (s1 + s2) ρdθ
)
dρ. (77)

From the properties of the functions s1 (67) and s2 (69), it results that in the case under consideration (vA1n = vA2n and
ηo1 = −η

o
2):

s1 + s2 =
1
2
sgn(vTA1nη

o
1)
(
1+ sgn(vTA1nη

o
1)
)
+ (78)

+
1
2
sgn(vTA1n(−η

o
1))
(
1+ sgn(vTA1n(−η

o
1))
)
= 1. (79)

Thus, the resultant of the resistance forces with normal directions to the coin surface (f1n + f2n) can be expressed by the
formula:

f1n + f2n = −λn
∫ r

0

(∫ 2π

0
|vA1n|

b vA1n ρdθ
)
dρ. (80)

If it is additionally assumed that for the thin coin (h = 0), the air forces acting on the coin cylindrical surface equal zero
(f3n = 0 and f3τ = 0), one gets:

fn = f1n + f2n + f3n = −λn
∫ r

0

(∫ 2π

0
|vA1n|

b vA1nρdθ
)
dρ. (81)

The determination of the resultant of the forces tangential to the coin surface (fτ = f1τ + f2τ + f3τ ), defined by (51), on
the assumption that f3τ = 0, vA1τ = vA2τ and λτ1 = λτ2 = λτ , leads to:

fτ = f1τ + f2τ + f3τ = −2 λτ
∫ r

0

(∫ 2π

0
|vA1τ |

b vA1τ ρdθ
)
dρ. (82)

(vii) Moments of resistance forces for a thin coin.
Similarly, as with the forces, the moments originating from the resistance forces acting on the lateral surface of the

coin are neglected (m3 = 0) in the case of the thin coin. While determining a sum of the moments of normal components of
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Fig. 16. Velocity vector Ev′A of the point A after the collision and its scalar components v
′

Aτ , v
′

Aν , v
′

Az .

resistance forces (m1+m2), acting on the planes on both sides of the coin, on the basis of (73) (for vA1 = vA2 ,λn1 = λn2 = λn,
λτ1 = λτ2 = λτ ), we obtain:

mBn = m1n +m2n = −λn
∫ r

0

(∫ 2π

0
|vA1n|

b RTRBA1vA1n ρdθ
)
dρ, (83)

mBτ = m1τ +m2τ = −2 λτ
∫ r

0

(∫ 2π

0
|vA1τ |

b RTRBA1vA1τ ρdθ
)
dρ. (84)

For the thin coin (h = 0), both tangential and normal components of the resistance force moment vector with respect to the
point B (and the point C) can be defined explicitly.

4.3. Impacts against the floor

Let us consider that the imperfect coin collides with a floor when the point A on its edge touches the floor as shown in
Fig. 16. Assuming Newton’s hypothesis one gets

− χ =
v′Az

vAz
, (85)

where χ is the coefficient of restitution, A stands for the coin point which makes contact with the floor at the instant of
impact (Fig. 16), v′Az and vAz are projections of the velocity of the point A on the direction (z) normal to the impact surface,
before and after the impact, respectively.
The position of the point A in the body embedded frame is described by ξA, ηA, ζA (point A is located on the coin edge in

one of the coin planes). To describe the impacts consider the additional framewith an origin at point A and axis: z ′ —parallel
to the fixed axis z and axes τ , 3 in the ground plane (Fig. 16).
To analyze the phenomena that accompany the impact, Newton’s hypothesis, the laws of linear momentum and angular

momentum theorems of a body, as well as constraint equations have been employed. These equations – expressed in Euler
parameters – have the following form:

– Newton’s hypothesis(
2e02 + 2e32 − 1

)
(ω′ξηA − ω

′

ηξA)+ (2e0e1 + 2e2e3)(ω
′

ζ ξA − ω
′

ξ ζA)+ (2e1e3 − 2e0e2)(ω
′

ηζA − ω
′

ζηA)+ ż
′

= −χ
((
2e02 + 2e32 − 1

)
(ωξηA − ωηξA)+ (2e0e1 + 2e2e3)(ωζ ξA − ωξ ζA)

+ (2e1e3 − 2e0e2)(ωηζA − ωζηA)+ ż
)
, (86)

– linear momentum theorem

mẋ′ − Sx = mẋ, mẏ′ − Sy = mẏ, mż ′ − Sz = mż, (87)

– angular momentum theorem

2ζASye02 − 2ηASze02 − 2e2ηASxe0 − 2e3ζASxe0 + 2e1ηASye0 + 2e1ζASze0 + Jξω′ξ − Jξηω
′

η

− Jξζω′ζ − 2e1e3ηASx + 2e1e2ζASx − 2e2e3ηASy + 2e2
2ζASy − ζASy − 2e32ηASz + ηASz + 2e2e3ζASz

= Jξωξ − Jξηωη − Jξζωζ , (88)

−2ζASxe02 + 2ξASze02 + 2e2ξASxe0 − 2e1ξASye0 − 2e3ζASye0 + 2e2ζASze0 − Jξηω′ξ + Jηω
′

η − Jηζω
′

ζ

+ 2e1e3ξASx − 2e12ζASx + ζASx + 2e2e3ξASy − 2e1e2ζASy + 2e32ξASz − ξASz − 2e1e3ζASz
= −Jξηωξ + Jηωη − Jηζωζ , (89)
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Fig. 17. Coin-surface collision models: (a) the coin with a sharp edge, (b) the knurled coin, (c) the perfectly rough coin, (d) the smooth (frictionless) coin
(1), (e) the smooth (frictionless) coin (2), (f) the rough coin with developed friction.

2ηASxe02 − 2ξASye02 + 2e3ξASxe0 + 2e3ηASye0 − 2e1ξASze0 − 2e2ηASze0 − Jξζω′ξ − Jηζω
′

η

+ Jζω′ζ − 2e1e2ξASx + 2e1
2ηASx − ηASx − 2e22ξASy + ξASy + 2e1e2ηASy − 2e2e3ξASz + 2e1e3ηASz

= −Jξζωξ − Jηζωη + Jζωζ . (90)

Sx, Sy, Sz are the components of the impulse of base reaction (ES) defined in the fixed frame of coordinates (x, y, z);ωξ ,ωη ,ωζ
denote the components of the angular velocity in the moving frame of reference ξ, η, ζ . There are nine unknowns in Eqs.
(86)–(90). These equations are ordered in such a way that the unknown quantities (ẋ′, ẏ′, ż ′, ω′ξ , ω

′
η , ω
′

ζ , Sx, Sy, Sz) are on the
left-hand side.
To obtain two additional equations we have to consider the model of the contact between the coin and the horizontal

plane surface (ground, floor). According to Nejmark and Fufaev [53] several different models of collision effect can be
considered as shown in Fig. 17. The individual cases differ as far as the values of the components of the velocity vector of
the contact point (A) of the coin with the surface along the tangential direction (before the impact (vAτ ) and after the impact
(v′Aτ )) and along the normal direction (vAν and v

′

Aν) or the impulse of the ground reaction (ESτν) are concerned, namely:
(a) the coin with a sharp edge v′Az = −χvAz, v

′

Aν = 0, v
′

Aτ = vAτ ,
(b) the knurled coin v′Az = −χvAz, v

′

Aν = vAν, v
′

Aτ = 0,
(c) the perfectly rough coin v′Az = −χvAz, v

′

Aν = 0, v
′

Aτ = 0,
(d) the smooth-frictionless coin (1) v′Az = −χvAz, v

′

Aν = vAν, v
′

Aτ = vAτ ,
(e) the smooth-frictionless coin (2) v′Az = −χvAz, ESτν = E0,
(f) the rough coin with developed friction v′Az = −χvAz, ESτν = −µSz

EvAτν
vAτν
.

ESτν is the component on the floor reaction impulse located in the floor plane and µ the coefficient of dry friction between
the coin and the floor.
In the case of the rough coin conditions: v′Aν = 0, v

′

Aτ = 0 imply the following constraint equations:
(2e0e2 + 2e1e3)(ω′ξηA − ω

′

ηξA)+ (2e1e2 − 2e0e3)(ω
′

ζ ξA − ω
′

ξ ζA)

+
(
2e02 + 2e12 − 1

)
(ω′ηζA − ω

′

ζηA)+ ẋ
′
= 0, (91)

(2e2e3 − 2e0e1)(ω′ξηA − ω
′

ηξA)+
(
2e02 + 2e22 − 1

)
(ω′ζ ξA − ω

′

ξ ζA)

+ (2e1e2 + 2e0e3)(ω′ηζA − ω
′

ζηA)+ ẏ
′
= 0. (92)

Solving Eqs. (86)–(92) one gets the components of velocity of the center of the coin mass after the collision ẋ′, ẏ′, ż ′ and
the components of the coin angular velocity ω′ξ , ω

′
η, ω

′

ζ . Additionally, the components of the impulse reaction Sx, Sy, Sz are
calculated.
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Fig. 18. Coin motion simulation results: (a) 3D imperfect coin model, (b) 3D ideal coin model, (c) 2D imperfect coin model, (d) 2D ideal coin model.

In the case of a smooth ideal coin equations (86)–(90) can be simplified as Jξη = Jξζ = Jηζ = 0 to the following form:(
2e02 + 2e32 − 1

)
(ω′ξηA − ω

′

ηξA)+ (2e0e1 + 2e2e3)(ω
′

ζ ξA − ω
′

ξ ζA)+ (2e1e3 − 2e0e2)(ω
′

ηζA − ω
′

ζηA)+ ż
′

= −χ
((
2e02 + 2e32 − 1

)
(ωξηA − ωηξA)+ (2e0e1 + 2e2e3)(ωζ ξA − ωξ ζA)

+ (2e1e3 − 2e0e2)(ωηζA − ωζηA)+ ż
)
, (93)

m(ẋ′ − ẋ) = 0, m(ẏ′ − ẏ) = 0, m(ż ′ − ż) = Sz, (94)

Jξω′ξ +
(
−2ηAe02 + 2e1ζAe0 − 2e32ηA + ηA + 2e2e3ζA

)
Sz = Jξωξ , (95)

Jηω′η +
(
2ξAe02 + 2e2ζAe0 + 2e32ξA − ξA − 2e1e3ζA

)
Sz = Jηωη, (96)

Jζω′ζ (−2e1ξAe0 − 2e2ηAe0 − 2e2e3ξA + 2e1e3ηA) Sz = Jζωζ . (97)

5. Results and discussion

5.1. The comparison of different coin models

In our numerical calculations we consider the following coin data: m = 2 g, r = 1.25 cm, h = 0.2 cm (former Polish
1 PLN coin made of a light aluminum based alloy) and ξC = −0.1 cm, ηC = −0.1 cm, ζC = −0.02 cm. For numerical
simulations we used a standard Mathematica package [48,68].
Results of simulations of the coin motion during the free fall for neglected air resistance have been shown in Fig. 18(a–d)

(and Fig. 19(a–d)). Fig. 18(a, b) shows a simulation of the motion of the 3D imperfect (Fig. 18(a)) and ideal (Fig. 18(b)) coin
models (Eqs. (29)–(36) respectively). Fig. 18(c, d) presents results for a 2Dmodel of imperfect (Fig. 18(c)) and ideal (Fig. 18(d))
thin coins (Eqs. (37)–(39)).
A comparison of different coinmodels in the presence of air resistance is shown in Fig. 20where the trajectories calculated

with different models are presented in green (3D imperfect coin), navy blue (3D ideal coin), blue (2D imperfect coin) and
red (2D ideal coin).
The effect of air resistance is better visible in the exemplary calculations conducted for an ideal coin (ξC = 0, ζC = 0)

with negligible thickness (h = 0) and with the assumption that the axes ξηζ are the main axes of inertia. The data assumed
in the calculations are the same scaled parameters as in [67,49] (i.e., r = 1m,m = 1 kg, g = 1m/s2). The coin falls from the
assumed height z0 with a zero initial velocity of the mass center and the assumed initial angular velocityωξ0 = ϑ̇0 (ωη = 0,
ωζ = 0). The coin dynamics can be described assuming the plane motion in the yz plane (the angles of spin and precession
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Fig. 19. Coin motion simulation results (projection to the xz plane): (a) 3D imperfect coin model, (b) 3D ideal coin model, (c) 2D imperfect coin model,
(d) 2D ideal coin model.

Fig. 20. Free fall coin mass center trajectories for: 3D imperfect coin (green), 3D ideal coin (navy blue), 2D imperfect coin (blue) and 2D ideal coin (red).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

are equal to zero, ϕ = ψ = 0). Moreover, it has been assumed that air resistance is linearly dependent on velocity (the case
where b = 0 is considered). The values of components of resistance forces have been determined from relations (81)–(82).
The total moment of resistance forces with respect to the geometrical center (B), for the model of the thin, ideal coin under
analysis, has been defined on the basis of (84).
Fig. 21 presents an exemplary diagram showing changes in the velocity (Fig. 21(a)) and acceleration (Fig. 21(b)) of the

mass center of the coin, including the air resistance effect, whereas Fig. 22 depicts changes in the rotation angle ϑ (coin
inclination angle) and the vertical component of the resistance force frz . Solid lines represent the cases where air resistance
has been neglected whereas the broken lines have been calculated for air resistance characterized by λn = 0.3, λτ = 0.
It follows from the comparison of individual quantities, including the effect of air resistance and neglecting the effect

of these resistance forces, that an influence of resistance can be significant (as in the case of λ = 0.3). The velocity and
acceleration of the mass center are not straight lines – as in the case where resistance is neglected – but they exhibit an
oscillating character (similarly as the force frz). The frequency of these oscillations decreases with a decrease in the coin



J. Strzałko et al. / Physics Reports 469 (2008) 59–92 83

Fig. 21. Time series of the mass center of an ideal coin: r = 1 m,m = 1 kg, g = 1 m/s2; air resistance characterized by λn = 0.3, λτ = 0 — solid line, air
resistance neglected — dotted line.

Fig. 22. Time series of cosine ϑ (coin inclination angle) and air resistance vertical component ( frz ): r = 1 m, m = 1 kg, g = 1 m/s2; air resistance
characterized by λn = 0.3, λτ = 0 — solid line, air resistance neglected — dotted line.

angular velocity (ϑ̇). The plot of the function cosϑ points out to the fact that changes in the angle ϑ occur slower and
slower, and at the sufficiently long fall time, ϑ attains a constant value.
Generally, air resistance is a potential confounding factor. The air resistance causes the deviation of the trajectory of the

mass center from the vertical axis and damps the rotation of the coin. In the case of the real coin, this deviation is small and
only if the distance of the free fall is very long (tens of meters) the coin falls like a leaf, fluttering to the floor.
Eqs. (29)–(39) describe the case where the free fall of different coin models are differentiable so that one can calculate

transient Lyapunov exponents. By transient Lyapunov exponents we mean values obtained for a finite t not large enough
to ensure a satisfactory reduction of fluctuations but small enough to reveal slow trends [65,33,34]. Our calculations show
that for sufficiently large t all transient Lyapunov exponents tend to zero, so there is no sensitive dependence on initial
conditions during the free fall.
Results for the simulation of the coin bouncing on the floor are shown in Fig. 23. Trajectories calculated from different

models are indicated as in Fig. 20. Fig. 24 presents the trajectories of the coin mass center calculated for slightly different
initial conditions z0: z0 = 0.40001 (Fig. 24(a)), z0 = 0.40002 (Fig. 24(b)), z0 = 0.40003 (Fig. 24(c)), z0 = 0.40004
(Fig. 24(d)), z0 = 0.40005 (Fig. 24(e)), z0 = 0.40006 (Fig. 24(f)). The other initial conditions have been fixed to x0 = y0 = 0,
ẋ0 = ẏ0 = ż0 = 0, ϕ0 = ψ0 = 0, ϑ0 = 7π/180 rad, ωξ0 = ωζ0 = 0, ωη0 = 40.15 rad/s.
The sequences indicating which face of the coin is up after the successive impact in the simulations shown in Fig. 24 are

as follows:

(a) H ◦ HHH ◦ HHH ◦ HHH ◦ T ◦ T ◦ T ◦ HH for z0 = 0.40001,
(b) H ◦ HHH ◦ HH ◦ TT ◦ HHH ◦ T ◦ T ◦ T for z0 = 0.40002,
(c) H ◦ HHH ◦ HHH ◦ HH ◦ H ◦ T ◦ T ◦ T ◦ T ◦ T for z0 = 0.40003,
(d) H ◦ HHH ◦ TTT ◦ TTT ◦ T ◦ H ◦ H ◦ H ◦ H ◦ H for z0 = 0.40004,
(e) H ◦ HHH ◦ HHH ◦ TTT ◦ HHH ◦ H ◦ T ◦ TT for z0 = 0.40005,
(f) H ◦ HHH ◦ HHHH ◦ TT ◦ T ◦ HHHHH ◦ TT for z0 = 0.40006.

Some of the collisions are not visible in the scale of Fig. 24 as they occur in small time intervals. More details are visible at
the enlargements shown in Fig. 25.
In the presented examples one can notice that bouncing on the floor introduces a dependence on the initial conditions.

This dependence is better visible in Fig. 26. Trajectories of the coin center of mass starting from slightly different initial
conditions are shown in different colors. One can notice that in few initial impacts trajectories differ significantly from each
other.
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Fig. 23. Coin mass center trajectories after collisions for: 3D imperfect coin (green), 3D ideal coin (navy blue), 2D imperfect coin (blue) and 2D ideal coin
(red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The dependence on the initial conditions due to impact can lead to unpredictability and chaotic behavior in mechanical
systems [29,30]. To quantify the dependence on the initial conditions we introduced the following map. Let U : [0, 2π ] →
[0, 2π ] be a map which maps the point φn on the edge of the coin which hits the floor at the nth impact to the point φn1
which hits the floor at the (n+ 1)th impact. An example of such a map is shown in Fig. 27. The left part of Fig. 27 shows the
points on the edge of the coin which collide with the floor at successive collisions. Numbers around the coin edge indicate
points of the few initial collisions. The analysis of the time series of points φ1, φ2, . . . , shows that the dynamics of U is
characterized by transient chaotic behavior as the largest transient Lyapunov exponent is positive (equal to 0.024).
Our simulations reveal that from the point of determining the final outcome (heads or tails) two types of collisions shown

in Fig. 28(a–c) are possible. In the first scenario after many soft chattering collisions (occurring in exponentially decreasing
time intervals) which orient the coin closer to being perpendicular to the surface the coin finally flips over (Fig. 28(a)). After
the nth collision the coin flips over during the freemotion before the next (n+1)th collision. The second type is characterized
by the larger momentum transfer during the collision which allows the coin to flip around during the motion over the floor
(Fig. 28(b)). The observation of the side of the coin which is up after a successive collision, allows us to identify both types of
collisions (Fig. 28(c)). If the same side (say heads) is up in a number of collisions after which, one observes a flip to another
side (say tails), the sequence of soft chattering collisions takes place. When after a single tails side one observes a flip to
heads we have a second type of collision. The analysis of time series shows that the first type is more frequent.
The 1D model [38,67,49] can be an adequate model for the coin only in a particular case; (i) the coin mass center moves

along one plane, (ii) the vector of the coin total angular velocity is perpendicular to the plane determined by its mass center
trajectory.
The angle between the angular momentum and the normal to the coin is constant along the coin trajectory only when

the air resistance is neglected so that the results of [13] which are based on this property cannot be always generalized.
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Fig. 24. Results of coin tossing: (a) z0 = 0.40001, (b) z0 = 0.40002, (c) z0 = 0.40003, (d) z0 = 0.40004, (e) z0 = 0.40005, (f) z0 = 0.40006 (in all cases:
ωη0 = 40.15 rad/s, x0 = y0 = 0, ẋ0 = ẏ0 = ż0 = 0, ϕ0 = ψ0 = 0, ϑ0 = 7π/180 rad, ωξ0 = ωζ0 = 0, ωη0 = 40.15 rad/s, λn = 0.8, λτ = 0.2, χ = 0.8).

Summarizing, we found that for the real coin, in which the distance between the center of the mass and the geometrical
center is small, it is sufficient to consider a simplified model of the ideal thin coin. When the distance of the free fall is small,
the effect of the air resistance is hardly visible and can be neglected.

5.2. Why the dynamics is predictable?

The equations of motion (29)–(39) given in Section 4 are Newton’s equations, with no external source of random
influence, i.e., the fluctuations of air, thermodynamic or quantum fluctuations of the coin. One can construct a mapping
of the initial conditions to a final observed configuration (heads or tails). The initial conditions are: position, configuration,
momentum, and angular momentum at the beginning of the free fall motion. There are three possible final configurations
after bouncing on the floor: the coin terminates flat on the surface with it heads side up, its tails side up, or the coin balances
on its edge. The first two configurations are stable. In some studies these are called stable point attractors [67,9], but the
term attractor does not exactly coincidewith the definition known in nonlinear dynamics. The flow given by the equations of
motionmaps all possible initial conditions into one of the final configurations. The set of initial conditionswhich aremapped
onto heads configuration create heads basin of attraction while the set of initial conditions mapped onto tails configuration
create tails basin of attraction. The boundary which separates heads and tails basins consists of initial conditions mapped
onto the coin standing on the edge configuration. For an infinitely thin coin this set is a set of zero measure and thus with
probability one the coin ends up either heads or tails. For the finite thinness of the coin this measure is not zero but the
probability of edge configuration to be stable is low.
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Fig. 25. Detailed view (t ∈ (1, 1.5)) of coin tossing results: (a) z0 = 0.40001, (b) z0 = 0.40002, (c) z0 = 0.40003, (d) z0 = 0.40004, (e) z0 = 0.40005,
(f) z0 = 0.40006 (in all cases: ωη0 = 40.15 rad/s, x0 = y0 = 0, ẋ0 = ẏ0 = ż0 = 0, ϕ0 = ψ0 = 0, ϑ0 = 7π/180 rad, ωξ0 = ωζ0 = 0, ωη0 = 40.15 rad/s,
λn = 0.8, λτ = 0.2, χ = 0.8).

Fig. 26. Trajectories of the coin mass center: z0 = 0.40001, z0 = 0.40002, z0 = 0.40003, z0 = 0.40004, z0 = 0.40005, z0 = 0.40006 (in all cases:
ωη0 = 40.15 rad/s, x0 = y0 = 0, ẋ0 = ẏ0 = ż0 = 0, ϕ0 = ψ0 = 0, ϑ0 = 7π/180 rad, ωξ0 = ωζ0 = 0, ωη0 = 40.15 rad/s, λn = 0.8, λτ = 0.2, χ = 0.8).

If the outcome of the long sequence of the coin tossing is to give a random result, it can only be because
the initial conditions vary sufficiently from toss to toss. Assume the one that can set the initial conditions Φ =

{x0, y0, z0, ẋ0, ẏ0, ż0, ψ, ϑ, ϕ, ωξ0, ωη0, ωζ0}with uncertainty ε. If the ball B in the phase space centered atΦ contains
only points which go to one of the final states, the outcome is predictable and repeatable. If in the ball B there are points
leading to different final states (denote the set of points leading to heads as H and the set points leading to tails as T ),
then the result of tossing is not predictable. One can calculate the probability of heads (tails) as prob(heads) = µ(H)/µ(B)
(prob(tails) = µ(T )/µ(B)) where µ is a measure of the sets H, T and B.
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Fig. 27. Numerical simulation of the map S: (a) positions of collision point on the coin, (b) φ(n)−φ(n+ 1) (ϑ = 25.021 ·π/180, coefficient of restitution
χ = 1, air resistance considered, number of collisions 316).

Fig. 28. Two types of collisions leading to the change of the coin face: (a) sequence of soft chattering collisions with small angular momentum transfer,
(b) collision with large angular momentum transfer.

It is worth investigating the possibility that heads–tails basin boundaries are fractal [21], riddled [2,63,55,36] or
intermingled [2,35]. Near a given basin boundary, if the initial conditions are given with the uncertainty ε, then a fraction
f (ε) of initial conditions give an unpredictable outcome. In the limit ε → 0, f (ε) ∼ εα where α < 1 for fractal and α = 1 for
smooth boundary. Fractal basin boundaries are discontinuous (an uncountable sequence of disjoint stripes) or continuous
(a snowflake structure) [45]. From the point of view of the predictability of the coin toss the possibility of the occurrence of
intermingled basins is the most interesting. One can say that the outcome of the coin tossing procedure is not predictable if
the basins of attraction of heads and tails are intermingled [2,35,55]. Let us briefly explain the term of intermingled basins
of attraction. Let A be an attractor with a basin of attraction β(A), which has a positive Lebesgue measure and contains
a neighborhood of A. A basin β(A) which has a positive Lebesgue measure but does not contain any neighborhood of the
attractor A is called a riddled basin, i.e., for any point in the riddled basin of the attractor a ball in the phase space of arbitrarily
small radius has a nonzero fraction of its volume in some other (say B) attractor basin. The basin of the attractor B may or
may not be riddled by the basin β(A). If the basin β(B) is also riddled by the basin β(A)we call such basins the intermingled
ones. In the case of the tossed coin the intermingled basins of attraction between heads and tails will mean that in any
neighborhood of the initial condition leading to heads there are initial conditions which are mapped to tails, i.e., there does
not exist an open set of initial conditions which are mapped to one of the final states or infinitely small inaccuracy in the
initial conditions makes the state of the coin tossing unpredictable.
As has already been mentioned in Section 1 basin boundaries for the simplest 1D model of the coin are given by the

equidistant hyperbolas [38] (Fig. 2). Fig. 29(a–d) shows the basins of attraction of heads and tails calculated for various coin
models. The dark regions correspond to heads and the white ones to tails. The case of the coin terminating on the soft floor
(restitution coefficient χ = 0) in which the air resistance has been neglected is shown in Fig. 29(a). The same case with the
air resistance is presented in Fig. 29(b). The models which allow the bouncing of the coin on the floor surface (χ = 0.6) are
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Fig. 29. Basins of attraction of heads (black) and tails (white), 2D model of an ideal thin coin described by Eqs. (37)–(39) has been simulated, (a, b)
impactless motion, (c, d) motion with bouncing on the floor, (a, c) air resistance considered, λn = 0.8, λτ = 0.2, (b, d) air resistance neglected.

shown in Fig. 29(c, d). In Fig. 29(c) and (d) the air resistance has been respectively neglected and considered. Fig. 29(a–d) has
been calculated by numerically integrating Eqs. (37)–(39). We fixed all initial conditions except two namely: the position of
the coin mass center z0 and the angular velocity ωξ . We check that similar structures of the basin boundaries are observed
when the different initial conditions are allowed to vary. So in Fig. 29(a–d) the 2D sections of the phase space are the good
indications of what happens in the entire phase space.
The structure of the basin boundaries for the coin models without bouncing on the floor are similar to the boundaries in

the Keller model [38]. It seems that the influence of the air resistance or the dimensionality of the model can be neglected
(compare Fig. 2 with Fig. 29(a), (b)). One can notice that the structure of the basin boundaries is more complicated (looks
like fractal or intermingled) when the coin is allowed to bounce on the floor as can be seen in Fig. 29(c, d). To check the
possibility that these basins are fractal (intermingled) the appropriate enlargements are presented in Fig. 30(a–d). It can be
seen that apart from the graininess due to the finite number of points, the boundaries are smooth (see Fig. 30(b, d)). Under
further magnification no new structure can be resolved, i.e., no evidence of intermingled or even fractal basin boundaries is
visible. The same conclusion has been reached in [67,49,37] where simple 1D models of the coin have been considered.
This allows us to state our main result: for any initial conditionΦ there exists such ε > 0 that the ball with radius ε centered

at Φ contains the pointswhich belong either to set H or T . In otherwords, if one can settle the initial conditionwith appropriate
accuracy, the outcome of the coin tossing procedure is predictable and repeatable.
It should be mentioned here that based on the simple 1D models a similar conclusion has been reached in [67,49].

5.3. Why the tossed coin can approximate the random process?

If the outcome of the long sequence of coin tosses is to give random results, it can only be because the initial conditions
vary from toss to toss. In the previous section we show numerically that for each initial condition there exists the accuracy
ε > 0 for which the final state is predictable. In this section we try to explain why for practically small (but not infinitely
small) ε the coin tossing procedure can approximate the random process. A sequence of coin tosses will be random if
the uncertainty ε is large in comparison to the width W of the stripes characterizing the basins of attraction so that the
condition ε � W is essential for the outcome to be random [67]. It is interesting to notice that uncertainty ε depends on
the mechanism of coin tossing while the quantityW is determined by the parameters of the coin.
As has been already shown in the previous subsection in the case of the coin bouncing on the floor the structure of the

heads and tails basin boundary becomes complicated (Fig. 29(c, d)). In Fig. 30(a–d) we show the calculations of these basins
for different number of impacts n. One observed the face of the coin which is up after the nth collision. Initial conditions
leading to heads and tails are indicated respectively in black and white. The 2Dmodel of an ideal thin coin described by Eqs.
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Fig. 30. Basins of attraction of heads (black) and tails (white), 2D model of an ideal thin coin described by Eqs. (37)–(39) has been simulated; (a, b)
enlargements of Fig. 29(c), (c, d) enlargements of Fig. 29(d); (a, c) air resistance considered λn = 0.8, λτ = 0.2, (b, d) air resistance neglected.

(37)–(39) has been simulated. In Fig. 30(a, c) the air resistance has been considered while in Fig. 30(b, d) air resistance has
been neglected. Fig. 31(a, e), Fig. 31(b, f), Fig. 31(c, g) and Fig. 31(d, h) show results for respectively 0, 2, 5 and 9 collisions.
With the increase of the collision numbers it is possible to observe that the complexity of the basin boundaries increases
with the number of impacts. The increase of complexity is better visible when one considers the line in the phase space
projection shown in Fig. 30(a–d) and count the number of crossings from one basin to another one N . It is possible to show
that the function N(n) grows faster than exponential. With the finite graininess (resolution) of Fig. 30(a–d) these basin
boundaries look fractal and one can speak about fractalization like process which can be observed with the increase of
impacts. Sensitivity to the initial conditions introduced during impacts (see Fig. 24) is responsible for this ‘fractalization’. It
seems that this mechanism is similar to the fractalization route to strange nonchaotic dynamics [12].
To explain this process consider the limit case of the infinite number of impactswhich is possible in the unreal coin tossing

modelwhich neglects the air resistance and assumes the elastic impacts, i.e.,χ = 1. Consider themapU : [0, 2π ] → [0, 2π ]
introduced in Section 5.1 shown in Fig. 32. Analysis of the time series of points φ1, φ2, . . . , shows that the dynamics of U
is chaotic as the largest Lyapunov exponent is positive (equal to 0.08). In this limit case the basins of heads and tails are
intermingled and the outcome of the coin tossing is unpredictable. Numerically, this can observed when in the successive
enlargements of the heads–tails basin boundaries the new structure is visible.
In the real case, the infinite number of impacts cannot be realized due to the dissipation (inelastic impacts and air

resistance) so that the fractalization like process has to be stopped by the fulfillment of condition (20). The existence of
the chaotic process described by the map U explains why the coins behave in practice as perfect randomizers.

6. Conclusions

In this review, we discuss the dynamics of the tossed coin under realistic circumstances. Using Euler parameters
(normalized quaternions) we derive the equations of motion for the 3D imperfect coin which allows considering both the
influence of the air resistance and the bouncing off the nonsmooth floor. We found that for the realistic coin in which the
distance between the center of the mass and the geometrical center is small, it is sufficient to consider a simplified model of
the ideal thin coin. The air resistance causes the deviation of the trajectory of the mass center from vertical axis and damps
the rotation of the coin. When the distance of the free fall is small the effect of the air resistance can be neglected. During
the free fall the sensitive dependence on the initial conditions has not been observed.
The process of the coin bouncing on the floor has a significant influence on the final state (heads or tails). It has been

observed that the successive impacts introduce sensitive dependence on the initial conditions leading to transient chaotic
behavior.
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Fig. 31. Basins of attraction indicating the face of the coin which is up after the nth collision; 2D model of an ideal thin coin described by Eqs. (37)–(39)
has been simulated, black and white indicate respectively basins of heads and tails; (a, e) n = 0, (b, f) n = 2, (c, g) n = 5, (d, h) n = 9; (a–d) air resistance
considered, λn = 0.8, λτ = 0.2, (e–h) air resistance neglected.

The basins of attraction of heads and tails (the sets of the initial conditions leading to both outcomes) show that the
boundaries between heads and tails domains are smooth. This allow us to state our main result; there exists an open set of
initial conditions for which the outcome of the coin tossing is predictable.
In practice although heads and tails boundaries are smooth the distance of a typical initial condition from a basin

boundary is so small that practically any finite uncertainty in initial conditions can lead to the uncertainty of the result
of tossing. This is especially visible in the case of the coin bouncing on the floor, when with the increase of the number
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Fig. 32. Numerical simulation of the map S: (a) positions of collision point φ(n) on the coin, (b) φ(n) − φ(n + 1) (ϑ = 25.021 · π/180, coefficient of
restitution χ = 1, air resistance neglected, number of collisions is 700).

of impacts the basin boundaries become more complicated. In this case one can consider the tossing of a coin as an
approximately random process.
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