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Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland

Accepted 3 July 2006

Communicated by Ji-Huan He
Abstract

We consider the dynamics of chaotic oscillators suspended on the elastic structure. We show that for the given con-
ditions of the structure, initially uncorrelated chaotic oscillators can synchronize both in chaotic and periodic regimes.
The phenomena of the periodization, i.e., the behavior of nonlinear oscillators become periodic as a result of interaction
with elastic structure, have been observed. We formulate the criterion for periodization of double well-potential Duffing
oscillator evolution in terms of the forces and displacements in the spring elements. We argue that the observed phe-
nomena are generic in the parameter space and independent of the number of oscillators and their location on the elas-
tic structure.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of synchronization in dynamical and, in particular, mechanical systems has been known for a long
time. In the last decade of the XX century the idea of synchronization has been adopted for chaotic systems [1–13]. It
has been demonstrated that two or more chaotic systems can synchronize by linking them with mutual coupling or with
a common signal or signals. In the case of linking a set of identical chaotic systems (the same set of ODEs and values of
the system parameters) complete synchronization can be obtained. The complete synchronization takes place when all
trajectories converge to the same value and remain in step with each other during further evolution (i.e.,
limt!1jx(t) � y(t)j = 0 for two arbitrarily chosen trajectories x(t) and y(t)). In such a situation all subsystems of the
augmented system evolve on the same manifold on which one of these subsystems evolves (the phase space is reduced
to the synchronization manifold). Linking homochaotic systems (i.e., systems given by the same set of ODEs but with
different values of the system parameters) can lead to imperfect synchronization (i.e., limt!1jx(t) � y(t)j 6 e, where e is
a vector of small parameters) [14] or to the phase synchronization [15]. In such linked systems it can be also observed a
significant change of the chaotic behavior of one or more systems.

In the current studies we consider the synchronization of nonlinear chaotic oscillators located on (coupled through)
elastic structure. We present a numerical study of a realistic model of two double well-potential Duffing oscillators
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suspended on the elastic beam. In both cases nonlinear oscillators are externally excited by periodic force with a fre-
quency x.

We show that for the given conditions of the elastic structure (linear oscillator or elastic beam), initially uncorrelated
chaotic oscillators can synchronize both in chaotic and periodic regimes. One can observe the phenomena of the peri-
odization of oscillators, i.e., the behavior of nonlinear oscillators becomes periodic as a result of interaction with elastic
structure.

We argue that the observed phenomena are generic in the parameter space and independent of the number of oscil-
lators and their location on the elastic structure. Additionally, we give the physical explanation of the observed phe-
nomena in terms of the forces and displacements in the spring elements.

The paper is organized as follows. In Section 2 we recall some fundamental properties of chaotic behavior in double
well-potential Duffing oscillator. Section 3 considers dynamics of Duffing oscillator connected with a linear oscillator
and forms the criterion for periodization of the oscillator’s evolution. The behavior of two Duffing oscillators sus-
pended on the elastic beam is discussed in Section 4. Finally our results are summarized in Section 5.
2. Chaos in the single oscillator

We consider double well-potential Duffing oscillator shown in Fig. 1. Its evolution is described by:
m€y þ dy _y � kyy þ kdy3 ¼ F sin xt ð1Þ
where m, dy, ky, kd, F and x are constant. Oscillator (1) has three equilibria: unstable for y00 = 0 and two stable for
y01 = 1 and y02 = �1. In our numerical analysis we assumed m = 1, dy = 0.168, ky = 0.5, kd = 0.5, F = 0.21 and
x = 1, i.e., oscillator (1) shows chaotic behavior [16,17].

In Fig. 2a we have plotted time series (y versus t), where time t is described by a number N of periods of excitation
2p/x and in Fig. 2b the adequate phase portrait is shown. One can observe that the necessary condition for the occur-
rence of chaotic behavior are the trajectory jumps between neighborhoods of stable equilibria y01, and y02. Such jumps
occur when the difference between jy � y01,02j is larger than 1. The decrease of the value of excitation amplitude F leads
to jy � y01,02j < 1 and periodic oscillations in the neighborhood of y01 or y02.
3. Periodization of double well-potential duffing oscillator: linear analogy

Now we can form a question if the periodization of the behavior of Duffing oscillator (1) can be achieved by con-
necting it (in series) to the other linear oscillator. After such a connection the spring length jy � y01,02j is reduced to
jy � z � y01,02j, where z is the displacement of a linear oscillator. Reducing jy � z � y01,02j to value less than 1 means
that Duffing oscillator does not leave the neighborhood of one’s stable equilibria hence cause of chaotic behavior can be
eliminated. The optimal system in respect of the minimization of jy � z � y01,02j is the linear oscillator in the resonance
range.

This phenomenon can be explained on the example of a linear undamped system shown in Fig. 3a. The evolution of
the system is described by:
m€y þ kyðy � zÞ ¼ F sin xt

u€zþ kyðz� yÞ þ kzz ¼ 0
ð2Þ
Fig. 1. Double well-potential Duffing oscillator.



Fig. 2. Chaotic evolution of Duffing oscillator (1); m = 1, dy = 0.168, ky = 0.5, kd = 05, F = 0.21 and x = 1: (a) time series and (b)
phase space.
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Fig. 3. (a,b) Two coupled (in series) oscillators and (c) bifurcation diagram y � z versus u, linear oscillator (shown in grey): m = u = 1,
dy = 0, ky = 1, kd = 0, kz = x2u, F = 0.21, x = 1, Duffing oscillator (shown in black): m = u = 1, dy = 0.168, ky = 0.5, kd = 0.5,
F = 0.21, x = 1, kz = x2u.
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and the system (2) has one equilibrium y = z = 0. For kz = x2u amplitudes of two masses (u and m) are equal. Mass u

oscillates with amplitude zmax ¼ F
�x2m and driving force F moves in mass m in such a way that two oscillators behave in

the same manner, i.e., y = z. There is no force in spring ky so this spring has no influence on the evolution of the system
(2).

The bifurcation diagram of spring displacement y � z versus mass u has been shown in Fig. 3c. In numerical calcu-
lation we have taken: m = u = 1, ky = �1, dy = 0, kz = x2u, kd = 0, F = 0.21, x = 1, in the case of linear oscillator and
m = u = 1, dy = 0.168, ky = 0.5, kd = 0.5, F = 0.21, x = 1, kz = x2u in the case of Duffing oscillator.

One can see that changing u it is possible to reduce spring displacement even to zero (for u = 3). This phenomena has
been observed not only for the linear oscillator (in this case it be explained analytically) but for Duffing oscillator as
well. Results for linear and Duffing oscillators are shown respectively in gray and black in Fig. 3c.
4. Duffing oscillators suspended on the elastic beam

Consider the system, shown in Fig. 4. Two identical Duffing oscillators are suspended on two concentrated masses u1

and u2 located on the massless elastic beam. The evolution of the system is described by



Fig. 4. Two Duffing oscillators suspended on the elastic beam.
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m1€y1 þ dy1ð _y1 � _z1Þ þ ky1ðy1 � z1Þ þ kd1ðy1 � z1Þ3 ¼ F 1 sin x1t

m2€y2 þ dy2ð _y2 � _z2Þ þ ky2ðy2 � z2Þ þ kd2ðy2 � z2Þ3 ¼ F 2 sin x2t

u1€z1 þ d11 _z1 þ k11z1 þ k12z2 � dy1ð _y1 � _z1Þ � ky1ðy1 � z1Þ � kd1ðy1 � z1Þ3 ¼ 0

u2€z2 þ d22 _z2 þ k21z1 þ k22z2 � dy2ð _y2 � _z2Þ � ky2ðy2 � z2Þ � kd2ðy2 � z2Þ3 ¼ 0;

ð3Þ
where kij is the coefficient of stiffness matrix of the beam and dij is the coefficient of damping matrix of the beam. In
numerical investigations we have taken the following values of system parameters:

(i) Duffing oscillators:
m1;2 ¼ 1:0; dy1;2 ¼ 0:168; ky1;2 ¼ �0:5; kd1;2 ¼ 0:5; F 1;2 ¼ 0:21;x1;2 ¼ 1:0;
(ii) Elastic beam:
l = 1.0, l1 = 0.333, l2 = 0.666, EI = 1/48 (with such a stiffness of the natural frequency of oscillations of the beam
with one mass u = 1.0 located at the half is equal to 1 and equal to the natural frequency of suspended oscillator
kd = 0, ky = �1,); E is the modulus of elasticity of the beam material and I is the moment of inertia of the beam
cross section about its central line, stiffness coefficient of the beam kij were computed from the equation of beam
deflection EIy00 = Mg. Damping coefficient d11 and d22 are ratios of matrix u, where u = diag[u1,u2]. The coupling
introduced in the system (3) is the example of nondiagonal coupling which is typical for mechanical systems [8,9].

As we have mentioned, the investigated oscillator can jump from the neighborhood of one stable equilibrium to the
neighborhood of another one. This jumps are responsible for chaotic behavior. As described in Section 3 the period-
ization of oscillations in system (3) can be achieved by decreasing the length of the spring (y � z) without changing
the amplitude y. Consider a linear beam with two nonlinear oscillators. If the stiffness of the beam EI is too big then
the displacement z is too small to change the character of the oscillator’s behavior so we still have chaotic behavior. A
suitable reduction of the beam stiffness changes the character of the oscillator behavior to the periodic one as can be
seen in Fig. 5 where we have shown the plots of y1 and z1 versus time t for beam stiffness EI = 1/48 and different masses
of u1 and u2. It is worth to notice that due to the symmetry of the system (3) two Duffing oscillators synchronized, i.e.,
y1 = y2.

Small asymmetry of the system has no influence on it. Oscillations of Duffing systems take place in the neighborhood
of state of equilibrium y01 = 1, to facilitate assessment we have shown value y1 reduced by 1.

As we have shown in Fig. 5a masses u1,2 are small enough, there is no phase shift between displacement of the oscil-
lator and mass settled on the beam, the system is in phase synchronization range. The beam is following the evolution of
Duffing oscillators reducing the length of the springs and changing oscillators behavior to the periodic motion. Increase
of masses u1,2 to the value u1,2 > 0.65 results in the fact, that the natural frequency of the beam is equal to 1, i.e., to
frequency of driving excitation. In Fig. 5b we have shown courses of displacements y1 � 1 and z1 are nearly identical



Fig. 5. Evolution of the system (3); m = 1.0, dy = 0.168, ky = �0.5, kd = 0.5, F = 0.21, x = 1.0, l = 1.0, l1 = 0.333, l2 = 0.666, EI = 1/
48: (a) u1 = u2 = 0.005, (b) u1 = u2 = 0.8, (c) u1 = u2 = 1.8, (d) bifurcation diagram y1 � 1 � z1 versus u1 = u2 and (e) bifurcation
diagram y1, y2 versus u1 = u2.
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(in Section 3 we described these phenomena in the example of two linear oscillators). With further increase of masses
u1,2, the phase shift between Duffing oscillators and beam appear as it is shown in Fig. 5c for u1,2 = 1.8. In this case
elastic beam has already passes the resonance and one can see that displacements amplitudes of the springs are larger.



Fig. 6. Evolution of the system (3) when Duffing oscillators operate on different periodic attractors; m = 1.0, dy = 0.168, ky = �0.5,
kd = 0.5, F = 0.21, x = 1.0, l = 1.0, l1 = 0.333, l2 = 0.666, EI = 1/48.

Fig. 7. Evolution of the system (3) in the case of asymmetrical suspension of Duffing oscillators; m = 1.0, dy = 0.168, ky = �0.5,
kd = 0.5, F = 0.21, x = 1.0, l = 1.0, l1 = 0.5, l2 = 0.75, EI = 1/48.
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In Fig. 5d the bifurcation diagram: displacement y1 � 1 � z1 of the spring versus masses u1,2 is shown. One can see
that the minimum of the oscillations amplitude occurs for u1,2 = 0.65. Fig. 5e shows bifurcation diagram of y1 and y2

versus u1 = u2. One can observe that for masses u1,2 < 1.8 evolution of the system (3) is periodic (as indicated by single
dots in Fig. 5d). For larger u1,2 (u1,2 > 1.9) system (3) shows chaotic behavior – two oscillators jumps from one state of
equilibrium to another one. Moreover, their motion is not identical because of asymmetry of the system. On the bound-
ary of periodic and chaotic ranges we have coexistence of various attractors (periodic with different period and chaotic
ones).

One of the properties of nonlinear oscillators is the coexistence of different attractors in the phase space. For our
next example we have chosen initial conditions of two Duffing oscillators in neighborhoods of different equilibria
(for one oscillator in the neighborhood of y01 = 1 and for another one in the neighborhood of y02 = �1). As we have
shown in Fig. 6 periodization of the behavior can be observed. In this case oscillator evolves on different periodic
attractors.

Second problem we have taken into consideration is the asymmetry of the points of fixing oscillators to the beam.
For numerical example we have chosen l1 = 0.5 and l2 = 0.75 and as it is shown in Fig. 7 periodization of oscillators
behavior can also be observed in this case.
5. Conclusions

We investigated the possibility of the synchronization of nonlinear chaotic oscillators located on (coupled through)
elastic structure. In the numerical study of a realistic model of two double well-potential Duffing oscillators suspended
on the elastic beam we showed that for the given conditions of the elastic structure oscillations initially uncorrelated
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chaotic oscillators can synchronize in periodic (complete synchronization) regime. We identified the phenomena of the
periodization of oscillators in which the behavior of nonlinear oscillators becomes periodic as a result of the interaction
with the elastic structure and gave physical explanation of the observed phenomena in terms of the forces and displace-
ments in the spring elements.

We gave numerical evidence that the observed phenomenon is generic in the parameter space and independent of the
number of oscillators and their location on the elastic structure.

The problem of the mismatch of Duffing oscillators parameters will be considered elsewhere [18].
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