
September 29, 2011 20:43 IJBC-chaotic-clocks

International Journal of Bifurcation and Chaos
c© World Scientific Publishing Company

Chaos in coupled clocks
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We consider the dynamics of two pendulum clocks (with pendulums of the same length but
different masses) suspended on the same beam. We give evidence that beside the complete
and phase synchronizations the considered system can exhibit long period synchronization and
chaotic behavior. We argue that the observed phenomena are robust.
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C. Huygens’ observation of the antiphase synchronization of two pendulum clocks mounted together

on the same beam [Huygens, C., 1665] was one of the first observations of the phenomenon of the coupled

harmonic oscillators, which stimulated a great number of studies of the systems which can synchronize

[Pikovsky, A., et al., 2001; Blekham, I.I., 1988]. Recently, Huygens’ original experiment has been rediscussed

by a few groups of researchers [Pogromsky, A., et al., 2003; Bennet, M., et al., 2002; Senator, M., 2006;

Dilao, R., 2009; Kumon, M., et al., 2002; Fradkov, A.L. and Andrievsky, B., 2007, Pantaleone, J., 2002;

Ulrichs, H., et al., 2009; Czolczynski, K., et al. 2009a, 2009b]. To explain Huygens’ observations special

experiments have been performed [Bennet, M., et al., 2002; Pantaleone, J., 2002; Czolczynski, K., et al.

2009a, 2009b]). It has been shown that to repeat Huygens’ results, high precision (the precision that

Huygens certainly could not achieve) is necessary.

In our previous paper [Czolczynski, K., et al. 2011] we consider the synchronization of two clocks which

have pendulums with the same length (the same period of pendulums oscillations) but different masses.

Such clocks are accurate, i.e., show the same time. We show that two such clocks hanging on the same beam
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beside the complete (CS) and phase synchronizations (PS) already demonstrated in [Pogromsky, A., et al.,

2003; Bennet, M., et al., 2002], perform the third type of synchronization in which both pendulums oscillate

with the same period T*. We identify period T* to be significantly larger than the period of pendulums

oscillations in the case when the beam is at rest -T. This type of generalized synchronization has been

called a long period synchronization (LPS). Additionally, we show that beside the periodic synchronous

behavior the clocks pendulums can perform chaotic-like uncorrelated oscillations.

In this paper we give evidence that two coupled clocks can show chaotic behavior. We study the

sensitivity of (LPS) and chaotic behavior on the parameters of the escapement mechanism. We show that

in the wide range of system parameters the system exhibits multistability, i.e., the coexistence of various

(LPS) and chaotic attractors.

The synchronization of two clocks can be studied using the model shown in Figure 1. It consists of

the rigid beam and two pendulum clocks suspended on it. The beam of mass M can move in a horizontal

direction, its movement is described by coordinate x. The beam M is connected to the base by a linear

spring kx and linear damper cx. The clocks’ pendulum consists of the light beam of the length l and the

mass mounted at its end. We consider the pendulums with the same length l but different masses m1 and

m2. The same length of both pendulums guarantees that the clocks are accurate, i.e., both show the same

time. The motion of the pendulums is described by angles ϕ1 and ϕ2 and is damped by dampers (not

shown in Figure 1) with damping coefficients cϕ1 and cϕ2. The damping coefficients cϕ1,2 are proportional

to the pendulums’ masses m1,2. The pendulums are driven by the escapement mechanism described in

details in [Czolczynski, K., et al., 2009b; Rowlings, A.L., 1944; Lepschy, A. M., et al., 1993; Roup, A.V.,

et al., 2003]. Notice that when the swinging pendulums do not exceed certain angle γN , the escapement

mechanisms generate constant moments MN1 and MN2 (proportional to the pendulum masses m1,2).

This mechanism acts in two successive steps (the first step is followed by the second one and the second

one by the first one). In the first step if 0 < ϕi < γN (i=1,2) then MDi = MNi and when ϕi < 0 then

MDi=0. For the second stage one has for -γN < ϕi < 0 MDi=-MNi and for ϕi > 0 MDi=0. The energy

supplied by the escapement mechanism balance the energy dissipated due to the damping. The parameters

of this mechanics have been chosen in such the way that for the beam M at rest both pendulums perform

oscillations with the same amplitude (the detailed description of the escapement mechanism has been given
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Fig. 1: The model of the system – two pendulum clocks are mounted to the beam which can move hori-
zontally.

in our previous work [Czolczynski, K., et al., 2009b]).

The equations of motion are as follow:

mil
2ϕ̈i + miẍl cosϕi + cϕiϕ̇i + migl sinϕi = MDi , (1)

(
M +

2∑

i=1

mi

)
ẍ + cxẋ + kxx +

2∑

i=1

mil
(
ϕ̈i cosϕi − ϕ̇2

i sinϕi

)
= 0,

where i = 1, 2. Eqs (1) describes the dynamical system which performs the self-excited oscillations [An-

dronov, A., et al., 1966].

In our numerical simulations eqs (1,2) have been integrated by the 4th-order Runge-Kutta method

adopted for the discontinuous systems (the integration step has been decreased when the trajectory has been

approaching discontinuity). The initial conditions have been set as follows; (i) for the beam x(0) = ẋ(0) = 0,

(ii) for the pendulums the initial conditions ϕ1(0), ϕ̇1(0) have been calculated from the assumed initial

phases β10 and β20, i.e., ϕ1(0) = Φ sinβ10, ϕ̇1(0) = αΦsinβ10, ϕ2(0) = Φ sinβ20, ϕ̇2(0) = αΦcos β20, where

Φ and α (α = 2π/T ) are respectively the amplitude and the frequency of the pendulums when the beam

M is at rest. We consider the following parameter values: γN = 5.0o, l = g/4π2=0.2485 [m], M = 10.0

[kg], m1 = 1 [kg], cx = 1.53 [Ns/m], kx = 3.94 [N/m], cϕ1 = 0.0083 × m1 [Ns], cϕ2 = 0.0083 × m2 [Ns],

MN1 = 0.075×m1 [Nm], MN2 = 0.075×m2 [Nm] and m2 ∈ [3.10, 4.27], for which system (1) exhibits the

coexistence of (CS), (LPS) and chaotic behavior.

In Figure 2(a-d) we show Poincare maps for typical periodic and chaotic solutions. We plot position

ϕ2 and velocity ϕ̇2 of the second pendulum when the first pendulum has zero velocity ϕ̇1 = 0 and change

its sign from positive to negative. An examples of (LPS) with periods 6T and 59T are shown Figure 4(a,b)

and Figure 4(c) presents chaotic behavior. The pendulum trajectory of Figure 4(c) is characterized by the
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Fig. 2: Poincare maps (ϕ2, ϕ̇2) for different (LPS) and chaotic attractors; m1 = 1.0 [kg], m2 = 3.105 [kg],
l = g/4π2 = 0.2485 [m], M = 10.0 [kg], cx = 1.53 [Ns/m], kx = 3.94 [N/m], cϕ1 = 0.0083 × m1 [Ns],
cϕ2 = 0.0083 × m2 [Ns], MN1 = 0.075 × m1 [Nm], MN2 = 0.075 × m2 [Nm]: (a) γN = 4.9o, T = 6, (b)
γN = 5.2o, T = 35, (c), γN = 5.1o, T = 59, (d) γN = 4.9o, chaotic behavior.

largest Lyapunov exponent equal to 0.127 (it has been estimated by the synchronization method described

in [Stefanski, A. and T. Kapitaniak (2003), Kapitaniak, T. and Stefanski, A., 2003])1. This calculations

confirm that the coupled clocks can exhibit chaotic behavior 2.

1As eqs. (1) are discontinuous one cannot directly calculate the largest Lyapunov exponent from the linearized dynamics
around the trajectory.
2Chaotic behavior of a single pendulum clock is also predicted and described in [Moon, F.C. and Stiefel, P.D., 2006] but model
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Next for a given value of m2 we consider the influence of the escapement mechanism parameters γN

and MN ) on the behavior of clocks’ pendulums. We assume that the energy supplied to the system is the

same in all cases, i.e., the product of γNMN is constant, so when we change γN we also recalculate MN .

Notice that in the case of identical clocks (pendulums with the same masses) one can observe only two

states: in-phase motion (complete synchronization (CS)) and anti-phase motion (phase synchronization

(PS) with the phase shift equals to π). In Figure 2 we show a typical basin of attraction for identical

clocks. Navy blue and yellow colors indicate (CS) and (PS) synchronizations respectively. When we take

the close values of initial phases the system tends to the complete in-phase synchronization. This tendency

is not significantly changed for nonidentical clocks (even with the large differences in pendulums’ masses).

Fig. 3: Basins of attraction of synchronous states for m1 = m2 = 1.0, white color indicate complete (in-
phase) synchronization, black color a anti-phase synchronization; Φ1 ≈ γN = 5.0o, l = g/4π2 = 0.2485
[m], M = 10.0 [kg], cx = 1.53 [Ns/m], kx = 3.94 [N/m], cϕ1 = 0.0083 ×m1 [Ns], cϕ2 = 0.0083 ×m2 [Ns],
MN1 = 0.075×m1 [Nm], MN2 = 0.075×m2 [Nm].

When the clocks are nonidentical they cannot exhibit antiphase synchronizations. In the initial condi-

tions’ domain in which identical clocks show antiphase synchronization (yellow in Figure 3) one observes

coexistence of (PS), (LPS) synchronizations and chaotic motion of pendulums. Figure 4(a-f) shows the

basins of attraction for m2 = 3.105 and six different values of escapement mechanism parameter γN

(γN = 4.5o (a); γN = 4.8o (b); γN = 5.0o (c); γN = 5.05o (d); γN = 5.1o (e); γN = 5.2o (f)). The numbers

on the basins indicate the period of the (LPS) and (C) denotes the chaotic behavior. One can see the main

range – period 1 (CS) synchronization remains the same in all six cases, so when the initial conditions

of the clock has been used.
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of both pendulums are close to each other, then the parameters of the escapement mechanism have no

influence on the pendulums’ dynamics. For larger differences in initial conditions one can observe the (LPS)

with different periods (in the range from 6T to 59T) and chaotic behavior. As it has been already men-

tioned all these phenomena are observed in the range of anti-phase synchronization observed for identical

masses of both pendulums (see Figure 3). In Figure 4(a) one can observe a coexistence of 11T and 23T,

11T remains unchanged up to γ = 5.2, then in Figure. 4(b) 6T appears. In Figure 4(c) 6T attractor is

dominant, then for γ = 5.05 6T disappears and 12T (possible period doubling bifurcation of 6T), 30T and

chaos (C) can be observed (Figure 4(d)). Then for γ = 5.05 (Figure 4(e)) all previous states are replaced

be 59T LPS. In Figure 4(f) two new LPS ranges appear: 13T (replacing 11T) and 35T appear. The largest

Lyapunov exponent of the chaotic attractors presented in Figure 4(a-f) varies between 0.095 and 0.125.

Most of the (LPS) and (C) basins are small open sets of escapement mechanism parameters (practically

small perturbation leads to their disappearance and the system jumps to another coexisting attractor.

To summarize we give evidence that two coupled clocks can show chaotic behavior, i.e., uncorrelated

motion of the pendulums. We show that in the wide range of the system parameters the system exhibits

multistability. The basins of attraction of the coexisting various (LPS) and chaotic attractors are small so

practically any perturbation or fluctuation of the system parameters can result in the jumps of the system

between different attractors. The described phenomena seem to be robust as they exit in the wide range

of the system parameters.
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