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We discuss synchronization thresholds in an array of nondiagonally coupled oscillators. We argue that
nondiagonal coupling can cause the appearance or disappearance of desynchronous windows in the coupling
parameter space. Such a phenomenon is independent of the motion character �periodic or chaotic� of the
isolated node system. A mechanism governing this phenomenon is explained and its influence on the global
network dynamics is analyzed.
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I. INTRODUCTION

Chaotic synchronization in networks of coupled dynami-
cal systems has been intensively investigated in recent years.
It has been demonstrated that two or more chaotic systems
can be synchronized by linking them with mutual coupling
or with a common signal or signals �1–3�. Over the last de-
cade, a number of new types of synchronization have been
identified �4� and new interesting ideas have appeared, e.g.,
the concept of the so-called small-world networks �5� which
include the properties of regular and random networks, or the
scale-free property, which is signified by the power-law
connectivity distribution of the network �6�.

An issue that appears most often during the investigation
of any synchronization problem is determining the synchro-
nization threshold, i.e., the strength of coupling that is re-
quired for the appearance of synchronization. In the case of
identical systems �the same set of ordinary differential equa-
tions and values of the system parameters�, complete syn-
chronization �2� can be obtained. The first analytical condi-
tion for complete synchronization of regular sets �all-to-all or
nearest-neighbor types of coupling� of completely diagonally
coupled identical dynamical systems has been formulated in
�3�. The complete diagonal �CD� coupling is realized by all
diagonal components of the output function for each pair of
subsystems. If all the diagonals are identical �see Eq. �2a��,
then the condition of synchronization is determined only by
the largest Lyapunov exponent of the node system and the
coupling coefficient �3,7,8�. This property of the CD cou-
pling causes the synchronous range of the coupling param-
eter for time-continuous subsystems to be only bottom lim-
ited �Fig. 1�a�� by a value of the coupling coefficient that is a
linear function of the largest Lyapunov exponent �8�. If the
coupling is partly diagonal �PD�; i.e., realized by not all di-
agonal components of the output function—see Eq. �2b�, or
nondiagonal �ND�, i.e., also or only nondiagonal components
of the output function are used in the coupling—see Eqs.
�2c� and �2d�, then more advanced techniques like a concept
called the master stability function �MSF� �Sec. II� have to
be applied �9�. This approach allows one to solve the net-
work synchronization problem for any set of coupling
weights, connections, and number of coupled oscillators.
Generally, in the literature dealing with PD or ND coupling
problems, the works where synchronization ranges of the
coupling parameter are only bottom limited �as in the case

of CD coupling—see Fig. 1�b�� or are double limited
�Fig. 1�c��, i.e., there exists one window of synchronization
�interval� in the desynchronous regime �2,3,7–13�, dominate.

Here, we present an example of an ND coupled oscillator
array, in which more than one separated range of synchroni-
zation occurs when the coupling strength increases. Then the
appearance or disappearance of desynchronous windows in
the coupling parameter space can be observed, when the
number of oscillators in the array or the topology of connec-
tions changes. This phenomenon has been called ragged syn-
chronizability. We explain and generalize the mechanism
governing ragged synchronizability �Secs. II and III� and
analyze its influence on the global network dynamics �Sec.
IV�.

II. SYNCHRONIZABILITY OF COUPLED OSCILLATORS

In order to estimate the synchronization thresholds of the
coupling parameter, we apply the idea of the MSF �9�. Under
this approach, the synchronizability of a network of oscilla-
tors can be quantified by the eigenvalue spectrum of the con-
nectivity matrix, i.e., the Laplacian matrix representing the
topology of connections between the network nodes. The
dynamics of any network of N identical oscillators can be
described in the block form

ẋ = F�x� + ��G � H�x , �1�

where x= �x1 ,x2 , . . . ,xN��Rm, F�x�= (f�x1� , . . . , f�xN�), G is
the connectivity matrix �e.g., Eq. �8��, � is the overall cou-
pling coefficient, � is the direct �Kronecker� product of two
matrices and H :Rm→Rm is an output function of the vari-
ables of each oscillator that is used in the coupling �it is the
same for all nodes�. Taking into consideration the classifica-
tion of couplings mentioned in Sec. I, we can present the
following instances of the output function for a three-
dimensional �3D� node system �e.g., a Rossler circuit or a
Lorenz oscillator�:

H = �1 0 0

0 1 0

0 0 1
� , �2a�

H = �1 0 0

0 1 0

0 0 0
� , �2b�

PHYSICAL REVIEW E 75, 016210 �2007�

1539-3755/2007/75�1�/016210�7� ©2007 The American Physical Society016210-1

http://dx.doi.org/10.1103/PhysRevE.75.016210


H = �1 0 0

1 0 0

0 0 0
� , �2c�

H = �0 0 0

1 0 0

0 0 0
� . �2d�

These H matrices exemplify the CD �Eq. �2a��, PD �Eq.
�2b��, and ND �Eqs. �2c� and �2d�� coupling, respectively.
Equation �2d� defines an exemplary case of pure ND

coupling, because all the diagonal components are equal to
zero.

In accordance with the MSF concept, the tendency to syn-
chronization of the network is a function of the eigenvalues
�k of the connectivity matrix G, k=0,1 ,2 , . . . ,N−1. After
block diagonalization of the variational equation of Eq. �1�,
there appear N−1 separated blocks �̇k= �Df+��kDH��k �for
k=0, �0=0 corresponds to the longitudinal mode�, where �k
represents different transverse modes of the perturbation
from the synchronous state �9–11�. Substituting ��=�+ i�,
where �=� Re��� �=� Im���, and � represents an arbitrary
value of �k, we obtain the generic variational equation

�̇ = ��Df + �� + i��DH�� , �3�

where � symbolizes an arbitrary transverse mode. The con-
nectivity matrix G= �Gij� satisfies 	 j=1

N Gij =0 �zero row sum�,
so that the synchronization manifold x1=x2= ¯ =xN is in-
variant and all the real parts of the eigenvalues �k associated
with transversal modes are negative �Re �k�0�0�. Hence,
we obtain the following spectrum of the eigenvalues of G:
�0=0��1� ¯ ��N−1. Now, we can define the MSF as a
surface representing the largest transversal Lyapunov expo-
nent �TLE� 	T, calculated for the generic variational equa-
tion, over the complex number plane �� ,��. If all the eigen-
modes corresponding to eigenvalues ��k=�k+ i�k can be
found in the range of negative TLE, then the synchronous
state is stable for the considered configuration of couplings.
If an interaction between each pair of nodes is mutual and
symmetrical, then only real eigenvalues of the matrix G
��k=0� exist. In such a case, which is called real coupling
�11�, the matrix G is symmetrical �see Eq. �8�� and the
MSF is reduced to the form of the curve representing the
largest TLE as a function of the real number � satisfying
the equation

� = �� . �4�

In Figs. 1�a�–1�c� typical examples of the MSF for the CD
coupling �Fig. 1�a�� and for the PD and ND coupling �Figs.
1�b� and 1�c�� are shown.

If the real coupling is applied to a set of oscillators with
the MSF providing a single range of negative TLE as shown
in Figs. 1�a�–1�c�, then the synchronous interval of the cou-
pling parameter � is simply reflected from the synchronous
� interval, according to Eq. �4�. For the case of the MSF with
a double-limited � interval of negative TLE �Fig. 1�c��, two
transverse eigenmodes have an influence on the � limits of
the synchronous regime: the longest spatial-frequency mode,
corresponding to the largest eigenvalue �1, and the shortest
spatial-frequency mode, corresponding to the smallest eigen-
value �N−1. Both these eigenvalues determine the width of
the synchronous � range and two types of desynchronizing
bifurcations can occur when the synchronous state loses its
stability �10�. Decreasing � leads to a long-wavelength bifur-
cation �LWB�, because the longest-wavelength mode �1 be-
comes unstable. On the other hand, increasing coupling
strength causes the shortest-wavelength mode �N−1 to be-
come unstable, thus a short-wavelength bifurcation �SWB�
takes place �10,11�. Another characteristic feature of coupled

FIG. 1. Typical examples of the MSF 	T��� for real coupling:
�a�, �b� bottom-limited synchronous range ��1 ,
�; �c� double-
limited synchronous interval ��1 ,�2�.
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systems with a double-limited synchronous interval is
an array size limit, i.e., the maximum number of oscillators
in an array that are able to synchronize. For a number of
oscillators that is larger than the size limit, the synchronous
� interval does not exist. Such an interval exists if
�N−1 /�1��2 /�1, where �1 and �2 are the boundaries of the
synchronous � interval �see Fig. 1�c���10–13�. If the syn-
chronous range is only bottom limited as depicted in Figs.
1�a� and 1�b�, then the boundary �the smallest� value of �,
required for the appearance of synchronization, is determined
only by the value of �1 and then a desynchronizing LWB
occurs with decreasing �. The type of single synchronous
range appearing in systems with PD coupling is dependent
on the conditional Lyapunov exponents �CLEs��2� of the re-
maining uncoupled subblock of the node system. This prop-
erty results from the asymptotic effect of the PD coupling
�11�. The essence of this effect, depicted in Figs. 1�b� and
1�c�, is that the largest TLE �MSF� tends asymptotically to
the value of the largest CLE �	C� for strong coupling. There-
fore, for negative 	C, the synchronous range is only bottom
limited �Fig. 1�b�� and for positive 	C, such a range is double
limited �Fig. 1�c��.

III. ANALYZED SYSTEM

In the numerical analysis, a classical Duffing oscillator

ÿ + hẏ + y3 = q sin��t� �5�

has been applied as an array node. The motion of each os-
cillator coupled in the array is governed by the following
first-order differential equations:

ẏi = zi,

żi = − yi
3 − hzi + q sin��t� + ��yi+1 + yi−1 − 2yi� , �6�

where q, �, and h are the amplitude and frequency of the
harmonic forcing and the damping coefficient, respectively,
i=1,2 , . . . ,N. In the numerical analysis, we have assumed q
as a control parameter and the following constant values: �
=1.0 and h=0.1. Equation �6� models a chain �the nearest-
neighbor configuration of couplings� of nonlinear mechani-
cal oscillators coupled using linear springs of the dimension-
less stiffness � �see Fig. 2�. Such a connection of oscillators
can be classified as a case of pure �diagonal components are
equal to zero� ND coupling due to the form of the output
function:

H = 
0 0

1 0
� . �7�

The structure of the nearest-neighbor connections of array
nodes is described by the following connectivity matrix:

G = �
− 2 1 0 ¯ 0 1

1 − 2 1 � ¯ 0

0 1 � � � ]

] � � � 1 0

0 ¯ � 1 − 2 1

1 0 ¯ 0 1 − 2

 . �8�

Since the coupling between identical mechanical oscillators
is symmetrical and mutual, the matrix G is symmetrical and
the real coupling of oscillators is realized.

Substituting the analyzed system �Eqs. �5� and �7��
into Eq. �3�, we obtain a generic variational equation for
calculating the MSF, i.e.,	T���, in the form

�̇ =  ,

̇ = − 3y2� − h + �� . �9�

IV. NUMERICAL RESULTS

The 3D diagram 	T�� ,q� shown in Fig. 3�a� can be
treated as a bifurcation diagram of the MSF 	T��� versus
the amplitude of forcing q, calculated for the system under
consideration �Eqs. �5� and �9��. On the cross sections
of the MSF surfaces for isolated �i.e., when �=0� node
systems working in the periodic �Fig. 3�b�� or chaotic
�Fig. 3�c�� regime, characteristic folds or bubbles are visible.
If such a bubble or fold appears over the � axis, then a
desynchronous interval of the coupling parameter � appears
�according to Eq. �4��, and alternately appearing “windows”
of synchronization and desynchronization can be observed,
before the final synchronous state is achieved due to
increasing coupling strength. We introduce the term ragged
synchronizability �RSA� in order to describe this
phenomenon.

However, desynchronous intervals of the coupling
parameter � are not always a direct reflection of the � inter-
vals, where the largest TLE is positive. In networks of
coupled chaotic oscillators exhibiting the folding MSF, the

FIG. 2. Chain of Duffing oscillators coupled by springs.
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desynchronizing scenario leading to the RSA can be more
complicated. In order to explain this mechanism, consider a
regular array �ring� of four oscillators �Eq. �6�� working in
the chaotic regime, when uncoupled, with the MSF shown in
Fig. 3�c�. Looking at the MSF diagram, we can distinguish
two synchronous ranges: a double-limited window of syn-
chronization ��1+ ,�2−� and a bottom-limited final synchro-
nous range ��2+ ,
�. The connection in the 1D array
gives the eigenvalues of G defined by the formula
�k=−4 sin2�k� /N�; thus for N=4 we have two nonzero ei-
genvalues �1=�3=−2 �twice degenerate� and �2=−4. The
desynchronizing mechanism is explained in Fig. 4, where a
projection from the MSF diagram on the bifurcation diagram
of the synchronization error e=	i=2

N ��x1−xi�2+ �y1−yi�2 ver-
sus the coupling strength � is shown. Complete synchroni-
zation takes place in the � ranges where e approaches zero
value. We can observe the third, intermediate desynchronous
� interval ��2−

2 ,�2+
2 � in comparison with only two desynchro-

nous � ranges. This interval appears as a result of the mode
2 desynchronizing bifurcation. Mode 2 crosses the second
desynchronous � interval ��2− ,�2+�, while mode 1 is still
located in the first synchronous � interval ��1+ ,�2−� and two
synchronous windows ��1+

1 ,�2−
2 � and ��2+

2 ,�2−
1 � can be

observed instead of only one ��1+
1 ,�2−

1 �.

On the other hand, for a different number of oscillators in
the array or for the case of the network of a different topol-
ogy of connections, the additional desynchronous interval
may not appear. The existence of an intermediate window of
desynchronization for a varying number of oscillators is de-
picted in Fig. 5, where all the � ranges correspond to the
same � range, in order to simplify the comparison. We can
see that an increasing number of oscillators in the array pro-
duces consecutive transverse modes. However, only two of
them �the longest� have a significant influence on the exis-

FIG. 3. Bifurcation diagram of the MSF 	T��� versus the am-
plitude of forcing q �a� and its cross sections q=7.0 �b� and 5.6 �c�.

FIG. 4. Desynchronizing mechanism: a projection from the
MSF 	T��� diagram, via eigenvalues �k of the connectivity matrix
G, to the bifurcation diagram of the synchronization error e versus
the coupling coefficient � for an array of N=4 oscillators, q=5.6.
Desynchronous intervals are in gray. Complete synchronization
takes place in the � ranges where e approaches zero value.

FIG. 5. Desynchronous � intervals �bubbles� associated with
different transverse modes for a varying number N of oscillators in
the array, q=5.6. All the � ranges correspond to the interval 0
���4.0.
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tence of the desynchronous intervals �represented by bubbles
in Fig. 5�. The second mode desynchronous window ap-
proaches and then meets the first desynchronous window of
mode 1, when the number of oscillators increases. For
N�10, it is completely consumed by the first mode window.
This guarantees that only mode 1 associated with the largest
eigenvalue �1 determines the ranges of synchronization, and
thus the � intervals are a direct reflection of the MSF accord-
ing to Eq. �4�. The same situation takes place for N=2,3,
because then only one nonzero eigenvalue of G exists.

The example described above shows that for node sys-
tems having a MSF with multiple synchronous intervals, de-
synchronizing bifurcations of different modes are possible.
This is in contrast to the systems with a single synchronous
range where such bifurcations are determined at most by two
eigenmodes, as we have mentioned in Sec. II. Therefore, we
have introduced some special notation for the boundaries
between synchronous and desynchronous ranges of coupling
strength. By the symbols � j− ,� j+ we have indicated the bor-
ders of consecutive desynchronous ranges of the MSF,
j=1,2 , . . . ,s, where s is the number of desynchronous �
ranges. The signs “�” or “�” in the subscript correspond to
the lower ��� and higher ��� boundaries of these ranges.
Consequently, the symbols of the borders of desynchronous
ranges of coupling strength are � j−

k , � j+
k . The proposed nota-

tion is depicted in Figs. 4 and 7. It is clearly visible that the
characters k, j−, or j+ result from an intersection of the lines
representing the boundary values � j− ,� j+ with a slope repre-
senting the eigenvalue �k. This notation shows which mode
desynchronizing bifurcation �superscript� takes place during
the transition from the synchronous to desynchronous regime
and which desynchronous interval of the MSF �subscript� is
associated with the given boundary value of the coupling
coefficient.

Another interesting RSA effect can be observed for the
array of periodic �when separated� oscillators under consid-
eration �Eq. �6��. In such a case, the first � interval �0,�1−�
corresponds to the synchronized state due to the initially
negative TLE. On increasing �, we can observe one or more
desynchronous windows due to “bubbles” of the positive
TLE �Fig. 3�b��. In Fig. 6 the corresponding � and � desyn-
chronous regions, for a periodic range of the parameter q, are

demonstrated. In the chosen range of q, a single desynchro-
nous � region of positive TLE dominates. This is the largest
hatched area. The corresponding desynchronous � regions,
for an array of N=10 oscillators, are in gray. We can see that
one � region produced five � regions �some of them are
partly overlapped� due to the independent transverse modes
corresponding to five different eigenvalues �k �four of them
are twice degenerate�. Therefore, we can observe various de-
synchronizing bifurcations associated with different trans-
verse modes. Each of these � regions is the effect of crossing
the � region by different eigenvalues of G, when the cou-
pling increases. This effect is explained in detail in Fig. 7,
where a graph of the desynchronizing mechanism analogous
to the one shown in Fig. 4 is presented. As demonstrated, a
single desynchronous interval of the MSF is precisely re-
flected on the bifurcation diagram of the synchronization er-
ror e��� obtained from the direct numerical simulation of the
synchronization process in the analyzed array of oscillators.
However, only four separated � intervals are visible, because
the first of them ��1−

5 ,�1+
4 � is composed of two intervals

��1−
5 ,�1+

5 � and ��1−
4 ,�1+

4 �, which are partly overlapped, i.e.,
��1−

5 ,�1+
4 �= ��1−

5 ,�1+
5 �� ��1−

4 ,�1+
4 �.

The results presented in Figs. 4–7 show that the charac-
teristic feature of the RSA effect is the self-similarity of de-
synchronous regions of the coupling parameter to the scale
defined by Eq. �4�. Thus, if the number of different eigenval-
ues of connectivity matrix increases, due to the increasing
number of oscillators or a varying topology of the network
connections, then a cascade of self-similar desynchronous �
regions appear and the effect of the RSA can be observed.

To conclude this section, we demonstrate another interest-
ing property of the RSA phenomenon, i.e., its sensitivity to
even small changes of the topology of connections. Consider
an array of ten oscillators, the same as previously �Eq. �6��. It
is a typical regular small-world network, where we can dis-
tinguish five different eigenvalues of the connectivity matrix:
−0.382, −1.382, −2.618, −3.618, −4. Let us randomize it
slightly, introducing the shortest possible shortcut avoiding
only one oscillator �see Fig. 8�, i.e., between the nodes num-

FIG. 6. Desynchronous � region �hatched� and the correspond-
ing desynchronous � regions �in gray� associated with five different
transverse modes, for an array of N=10 oscillators working �when
uncoupled� in the periodic range of the parameter q.

FIG. 7. �Color online� Projection from the MSF 	T��� diagram,
via eigenvalues �k, to the bifurcation diagram of the synchroniza-
tion error e versus the coupling coefficient � for an array of
N=10 oscillators, q=0.8. Desynchronous intervals are in gray.
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bered i−1 and i+1. Then, Eq. �6� for these nodes includes an
additional component ��yi+1−yi−1� or ��yi−1−yi+1�, respec-
tively. This shortcut introduces four new eigenvalues:
−0.504, −1.780, −3.220, −4.496. As we have shown above,
in systems exhibiting the RSA property, almost each eigen-
value �k can influence the distribution of desynchronous �
intervals, which can lead to considerable enhancement �or
reduction� of synchronizability. In Fig. 9 desynchronous �
regions of the considered array without a shortcut are shown
in black and additional regions �intervals� of desynchroniza-
tion that appeared after the shortcut creation are shown in
gray. These new regions are an effect of the second mode
desynchronizing bifurcation in particular, which corresponds
to the new eigenvalue �2=−0.504 of the connectivity matrix
for the array with a new link. It is clearly visible that the
shortcut caused an increase in the total area of desynchro-
nous intervals up to 30% in certain ranges of the control
parameter q. Thus, a slight perturbation of the network con-
nectivity distribution can induce a significant change in its
synchronizability.

V. CONCLUDING REMARKS

To summarize, we have identified and explained the phe-
nomenon of ragged synchronizability in networks of oscilla-
tors with ND coupling between the nodes. Its occurrence is
independent of the motion character �periodic or chaotic� of
the isolated node system. We have identified the mechanism
responsible for the appearance or disappearance of the win-
dows of synchronizability for different numbers of oscilla-
tors �Figs. 4 and 7�. The existence of at least one double-
limited MSF interval of the positive TLE �see Figs. 6 and 7�
with nonzero boundaries �i.e., � j− ,� j+�0� is a necessary
�but not sufficient� condition for the RSA. The source of the
RSA is a folding or bubbling character of the MSF �Figs
3�a�–3�c��. Such a form of the MSF results in a cascade of
self-similar desynchronous intervals of coupling strength
�Figs. 6 and 7�. Between them, the synchronous windows are
located, which is the essence of the RSA phenomenon. A rich

spectrum of desynchronizing bifurcations corresponding to
different transverse modes and sensitivity to slight changes
of the topology of network links �Fig. 9� are characteristic
features accompanying the RSA.

From our analysis presented in Sec. IV, it results that the
total desynchronous range for any case �chaotic or periodic
node system� of the real coupling is defined by the following
general formula:

� � ��
�11

�2
,
�12

�2
� � ¯ � 
�s1

�2
,
�s2

�2
��

�� ¯ � �
�11

�N
,
�12

�N
� � ¯ � 
�s1

�N
,
�s2

�N
��� .

�10�

For many cases of networks, desynchronous � ranges
are completely or partly overlapped, according to formula
�10�. Sometimes this can even lead to the existence of
one compact desynchronous interval �0,�s+

N−1�, so the RSA
effect cannot be observed in this case. For instance, in the
case shown in Fig. 4, the fulfillment of the inequalities
�2+ /�2−��2 /�1��2− /�1+ causes complete disappearance
of the synchronous window �or windows� between �1+

1 and
�2−

1 . Then only one desynchronous interval �0,�2+
1 � exists.

It should be pointed out that our analysis refers to com-
plete synchronization of all network nodes. Therefore, in fu-
ture research we are going to concentrate on the existence of
smaller groups �clusters� of oscillators with collective mo-
tion. Furthermore, it will be interesting to verify statistical
properties of small-world �5� or scale-free networks �6� with
an impact on the networks exhibiting the RSA property. We
will report the results of such analysis elsewhere.
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FIG. 9. Desynchronous � regions as a function of the parameter
q in an array of N=10 oscillators without a shortcut �in black� and
the additional regions of desynchronization that appeared after the
shortcut creation �in gray�.

FIG. 8. Chain of Duffing oscillators with a shortcut.
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