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Abstract

The dynamics of two coupled, dissipatively perturbed, near-integrable Hamiltonian, double-well Du�ng
oscillators has been studied. We give numerical and experimental (circuit implementation) evidence that
in the case of small positive or negative damping there exist two di�erent types of transient chaos. After
the decay of the transient chaos in the neighborhood of chaotic saddle we observe the transient chaos in the
neighborhood of unstable tori. We argue that our results are robust and they exist in the wide range of
system parameters.
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1. Introduction

Practical dynamical systems are mainly quasihyperbolic [1, 2], i.e., many di�erent types of attractors co-
exist in the phase space. In such systems we often observe the phenomenon of transient chaos [3, 4, 5, 6, 17],
where for almost all initial conditions within some practically important range, the system trajectory evolves
on a strange chaotic repeller (chaotic saddle) for signi�cantly long period of time, t∗ say, and afterward, for
t > t∗, converges to the regular attractor. The value of t∗ will of course vary from trajectory to trajectory,
and may be very sensitive to the initial conditions, but representative average of t∗ can be used to describe the
phenomena of transient chaos. Transient chaos has been found to be a typical behavior in the dissipatively
perturbed near Hamiltonian systems [4, 5, 6].

Our studies are devoted to the dynamics of two bi-directionally coupled conservative Du�ng oscillators,
i.e, the signal from �rst system is sent to second one and vice versa. This type of coupling is commonly
met in all �elds of science, i.e., biology [7, 8, 9], quantum systems [10, 11, 12, 13], lasers [14] ect. The
single Du�ng system is a model of pendulum, a neuronal groups or a Josephson-junction [18, 19, 20, 21].
When we introduce coupling between oscillators one can observe a functional relation between them [22].
Due to coupling, phase space is extended from two to four dimensions and additionally to periodic and
quasiperiodic dynamics chaotic and hyperchaotic behavior can be observed [23, 24, 25]. The appearance of
coupling causes energy transfer from one oscillator to another and one can observe behaviors like beating,
synchronization, oscillation death, creation of spatiotemporal structures ect. [26, 27, 28, 29, 30, 31, 32]

In some cases the dynamics presented in numerical investigations is not con�rmed in experiments due
to the parameter mismatch introduced by real elements. This is the reason why we experimentally realized
two coupled Du�ng oscillators as an electronic circuit. Building of the experimental setup, consisting of two
coupled Du�ng oscillators, is relatively simple, but dynamics of this circuit is enough complicated to show a
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complex behavior commonly met in quantum systems [30, 34, 35, 36] without dissipation and with small neg-
ative and positive damping. We investigate the properties of the experimentally observed quasiperiodic and
chaotic trajectories. We show that when the near-integrable Hamiltonian system is perturbed by dissipation
(positive or negative), then the stable orbits become simple attracting or repelling sinks, the Kolmogorov-
Arnold-Moser tori are destroyed and persistent chaotic motion disappears. We give experimental evidence
that in the perturbed system the chaotic saddle exits and is manifested by the transient chaotic behavior.
After the decay of this transient chaos we observe the second type of transient chaos, i.e., unpredictable
behavior in the neighborhoods of unstable tori. We show that the obtained results are robust and they exist
for the wide range of system parameters and energy levels.

The paper is organized as follows. Sec. 2 describes the system under consideration. In Sec. 3 and 4
we present our results of stability analizys and numerical simulations. The comparison of numerical and
experimental results is shown in Sec. 5. Finally, we conclude the paper in Sec. 6.

2. The model

2.1. Conservative system

As we mention before as a model of nonlinear system, we consider the Du�ng oscillator [37]. This system
is one of the typical and widely explored examples of non-linear oscillator. It is governed by the following
dimensionless second-order di�erential equation

d2z

dτ2
+

dV (z)

dz
= 0, (1)

where z and dz
dτ is a position and velocity of the system, τ is the dimensionless time. Considered oscillator

(1) is conservative and integrable. In our investigation we consider a double-well potential:

V (z) = −α

2
z2 +

β

4
z4, (2)

so the system has one saddle and two non-hyperbolic centers.
The single Du�ng system exhibits rich and ba�ing varieties of regular and chaotic motions. When two

systems given by equation (1) are coupled, the dimension of phase space is extended to four and dynamics
becomes even more complicated. In our investigations we consider a classical bi-directional linear coupling
and identical systems (with exactly the same values of parameters). Basing on this assumptions one can
write an expression of potential for two coupled Du�ng oscillators:

V (z1, z2) = −α

2
z21 +

β

4
z41 − α

2
z22 +

β

4
z42 +

k

2
(z1 − z2)

2, (3)

where subscript indicate system number (1 or 2) and k is the coupling parameter. The kinetic energy is
given by following formula:

T (z1, z2) =
1

2

((
dz1
dτ

)2

+

(
dz2
dτ

)2
)
, (4)

Formulas (3) and (4) allows to derive, using equations of Lagrange of second type, the following equations
which describes the dynamics of coupled double-double wells Du�ng oscillators,

d2z1
dτ2 − αz1 + βz31 + k(z2 − z1) = 0,
d2z2
dτ2 − αz2 + βz32 + k(z1 − z2) = 0,

(5)

where α > 0, β > 0 and k > 0.
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2.2. Non-conservative system

When one considers system (5) with damping (positive or negative) the energy dissipated or supply?
(added) to the oscillators is given by the Rayleigh term:

D(z1, z2) = b1
1

2

(
dz1
dτ

)2

+ b2
1

2

(
dz2
dτ

)2

, (6)

where b1 and b2 are damping coe�cients of �rst and second oscillator. In our work we consider identical
systems, so b1 = b2 = b. Positive b implies positive damping hence the oscillations are damped out and
system slowly diverges to one of the stable equilibrium position. In opposite case (negative damping) the
energy is pumped to the system and trajectory escape to in�nity. Equations of damped system have following
form:

d2z1
dτ2 + bdz1dτ − αz1 + βz31 + k(z2 − z1) = 0,
d2z2
dτ2 + bdz2dτ − αz2 + βz3 + k(z1 − z2) = 0.

(7)

3. Stability analizys

To hold generality, we do the stability analyzis using equations with damping. System (7) can be rewrite
as a four �rst order ODEs:

dx1

dτ = x2,
dx2

dτ = −bx2 + αx1 − βx3
1 − k(x1 − x3),

dx3

dτ = x4,
dx4

dτ = −bx4 + αx3 − βx3
3 − k(x3 − x1) = 0.

(8)

where x1 = z1, x2 = dz1
dτ , x3 = z2 and x4 = dz2

dτ . Then we calculate the steady states of system (8), we
obtain nine equilibrium positions. Due to symmetries only four of them are unique. To determinate their
stability we linearized system 8 around arbitrary equilibrium (x10, x20, x30, x40):

δẊ =


−λ 1 0 0

α− 3βx2
10 − k −b− λ k 0

0 0 −λ 1
k 0 α− 3βx2

30 − k −b− λ

 δX (9)

where δX = [δx1, δx2, δx3, δx4]
T . Solution of Eq. 9 in respect to λ gives us four eigenvalues for each steady

state which govern its stability. We consider three cases of damping coe�cient b values: conservative system
(b = 0.0), positive (b > 0) and negative (b < 0) sign of damping. The eigenvalues (see Table 1) are calculated
for following values of system parameters: β = 0.85, α = 0.3 and k = 0.08.

Only in the case of positively damped system (b = 0.0001) we observe stable equilibrium No. 1 and
4 (see Table 1). The rest are unstable centers (No. 2, 3 and 5). For Hamiltonian system No. 1 and 4
become hyperbolic equilibrium with two pairs of complex conjugated eigenvalues on imaginary axis. Finally,
for negative damping (b = −0.0001) all steady states are unstable. Their destabilization occurs trough the
double Hopf bifurcation.

4. Numerical results

In this section we show numerical results concerning dynamics of Eqs (5) and (7). We consider three
cases (similarity as for steady states): conservative and two others with small damping (positive or negative).
Such an approach lets us to investigate behavior of considered system in details. In the conservative limit
(b = 0) the dynamics of system (5) is dependent on initial conditions and the total energy of the system.
The total energy of the Hamiltonian system (5), based on formulas (3,4), is equal to: H = T + V . In our
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No. Steady state Positive damping (b = 0.0001) Ham. system (b = 0.0) Negative damping (b = −0.0001)

1
x10 = ±0.594
x30 = ±0.594

λ1,2 = −0.00005± 0.87178i
λ3,4 = −0.00005± 0.774597i

λ1,2 = ±0.87178i
λ3,4 = ±0.774597i

λ1,2 = 0.00005± 0.87178i
λ3,4 = 0.00005± 0.774597i

2
x10 = ±0.467
x30 = ∓0.201

λ1 = −0.360894
λ2,3 = −0.00005± 0.591784i

λ4 = 0.360794

λ1,2 = ±0.360844
λ3,4 = ±0.591784i

λ1 = −0.360894
λ2,3 = 0.00005± 0.591784i

λ4 = 0.360794

3
x10 = ±0.201
x30 = ∓0.467

λ1 = −0.360894
λ2,3 = −0.00005± 0.591784i

λ4 = 0.360794

λ1,2 = ±0.360844
λ3,4 = ±0.591784i

λ1 = −0.360894
λ2,3 = 0.00005± 0.591784i

λ4 = 0.360794

4
x10 = ±0.406
x30 = ∓0.406

λ1,2 = −0.00005± 0.34641i
λ3,4 = −0.00005± 0.52915i

λ1,2 = ±0.34641i
λ3,4 = ±0.52915i

λ1,2 = 0.00005± 0.34641i
λ3,4 = 0.00005± 0.52915i

5
x10 = 0.0
x30 = 0.0

λ1 = −0.547773
λ2 = −0.374216
λ3 = 0.374116
λ4 = 0.547673

λ1,2 = ±0.547673
λ3,4 = ±0.374116

λ1 = −0.547673
λ2 = −0.374116
λ3 = 0.374216
λ4 = 0.547773

Table 1: List of unique steady states and their stability for system 7 with b = 0.0001, b = 0.0 and b = −0.0001. equilibrium
No 1 to 4 are symmetric and No. 5 is single. For all equilibrium x20 = x40 = 0.0.

numerical calculations we take the same values of parameters (β = 0.85, α = 0.3, k = 0.08) as in steady
state analyzis.

In Figure 1(a-c) we plot the projections of Poincaré maps for three di�erent energy levels. The reference
values of total energy are following (i) H = 0.105156 (Figure 1(a)), (ii) H = 0.167042 (Figure 1(b)), (iii)
H = 4.81512 (Figure 1(c)). To plot Poincaré maps we consider from 400 up to 600 sets of initial conditions

(for each level of energy). We randomly generate three initial values and calculate the last one (dx2(0)
dt )

assuming the constant level of energy H - in some cases this fourth value is a complex number, so we neglect
it and generate a new set of initial conditions. In all cases there is a persistent regular motion on some
perturbed Kolmogorov-Arnold-Moser (KAM) orbits and on KAM "island" orbits in the phase space.

Regions of persistent chaotic motion are densely interwoven with regular regions. The measures of the
regular and chaotic regions can vary widely, both within the phase plane and as a function of the system
parameters and energy levels. More detailed analysis of the system (5), corresponding to the case shown
in Figure 1(a) is presented in Figure 2(a-c). To identify the dynamics of system and its changes in time
we calculate transient Lyapunov exponents [38]. For Hamiltonian systems sum of their spectrum is equal
to zero, moreover we do not observe attractors, so the values of Lyapunov exponents inform us about the
properties of given trajectory. In case of slightly damped systems, the change in spectrum of Lyapunov
exponents let us predict the qualitative transition of system dynamics. In Figure 2(a) we show time series
of x1(t), in Figure 2(b) four Lyapunov exponents and in last one (Figure 2(c)) the zoom of time series. One
can see that after transient time the values of Lypaunov exponents stabilize with one positive, two zeros
and one negative. Two zeros Lyapunov exponents come from the fact that one is connected with direction
along the �ow and the second one is due to the symmetry of the spectrum [38].

When near-integrable system (7) is perturbed by dissipation (positive: b > 0 or negative: b < 0), then
the stable orbits become simple attracting (b > 0) or repelling (b < 0) sinks, the KAM toris are destroyed
and replaced by unstable tori, so the persistent chaotic motion disappears. Instead of persistent chaos one
can observe chaotic saddle. Chaotic saddle is a typical non-attracting chaotic set which repels trajectories
only along some special hypersurface in the phase space (unstable manifold). Whereas, along other invariant
hypersurface (stable manifold), the set can actually attract nearby trajectories. Transient chaos in systems
described by di�erential equations is typically related to chaotic saddles [3, 4, 5, 6, 17]. During time evolution
one can observe a convergence to one of the stable steady states (positive damping) or escape to in�nity
(negative damping).

Transient chaotic time series of Eq. (7) are shown in Figure 3(a-c) (positive damping b = 0.0001) and
Figure 3(d-f) (negative damping b = −0.0001). We calculated time series for the following initial condition:
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Figure 1: Poincaré maps of eq. (3) for three di�erent energy spaces, k = 0.08; (a) H = 0.105156, (b) H = 0.167042, (c)
H = 4.81512.
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Figure 2: Time plots of conservative system (eqs (3)); (a) x1(τ), (b) transient Lyapunov exponents, (c) enlargement of (a).

Initial condition: x1(0) = −0.5021,
dx1(0)

dt
= −0.17606, x2(0) = −0.96946,

dx2(0)
dt

= 0.34206 and energy level H = 0.105156.
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x1(0) = 0.5021, dx1(0)
dτ = 0.17606, x2(0) = 0.96946, dx2(0)

dτ = 0.34206. The time series in Figure 3(a) and
Figure 3(d) exhibit the period of transient chaos in the neighborhood of chaotic saddle. At the end of
this period the trajectory still has chaotic properties but evolves in the neighborhoods of the sequence of
unstable tori with decreasing sizes and �nally tends to one of the stable �xed points (x10 = x30 = 0.594,
x20 = x40 = 0.0) or escape to in�nity. Figure 3(b) and Figure 3(e) show the evolution of transient Lyapunov
exponents. For small values of τ (τ < 0.6× 104) two exponents are negative and two are positive. With the
increase of τ (τ ∈ [0.6 × 104, 3.4 × 104) two Lyapunov exponents become zero and the other two (negative
and positive) stabilize in the period of the evolution in the neighborhood of chaotic saddle. During the
transient chaos in the neighborhood of unstable tori two of the Lyapunov exponents are positive and two
are negative, but their absolute values slowly decrease. Finally the sum of all Lyapunov exponents becomes
negative (positive damping) or positive (negative damping). The transition between transient chaos in the
neighborhood of chaotic saddle and transient chaos in the neighborhood of unstable tori is presented at the
enlargement in Figure 3(c) and Figure 3(f). The life time of the transient chaos exponentially decays with
the increase of the absolute value of b.

5. Experimental results

Dynamical system (7) can be implemented as an electronic circuit shown in Figure 4(a,b). Figure
4(a) presents the circuit diagram and Figure 4(b) its laboratory realization. Each oscillator is shown in
a black frame and is built using two capacitors, �ve resistors, and two multiplicators AD-633, introducing
nonlinearity. We measured the voltage at points V1,2 and δV1,2, which are related to z1,2 and

dz1,2
dt , receptively.

In order to set the initial conditions, we added an external impulse to the �rst operational ampli�er in the
�rst circuit for 1[s] approximately. The coupling is introduced through resistors R9,10,11 and potentiometer
R12, which is a controlling device. Applying Kirchho�'s laws, it is possible to show that the circuit is
described by Eqs (7) where α = 1

R4R7C1C2
, β = 0.01

R4R8C1C2
, k = 1

R4R9C1C2
, τ =

√
αt and b = − 1

R1C1
. In our

experiment we used out of shelf elements; resistors R1, R4, R10, R11, R12 = 10[kΩ], R2, R3, R5, R6 = 100[kΩ]
R7 = 100[kΩ], R8 = 1[kΩ], R9 = 10 [kΩ] with tolerance ±1% and capacitors C1, C2 = 10 [µF] with tolerance
±10%. Symbols (a) and (b) in description of electrical elements in Figure 4(a) correspond to �rst and second
system. An introduction of the resistor R1 in scheme given by green connection causes appearance of negative
damping in the circuit.

With this values of electrical elements we get following dimensionless parameters: α = 10, β = 10,
k = 100 and natural frequency ω0 =

√
α. Such parameters let us slow down experimental circuit and store

data with Multifunction Data Acquisition device (National Instruments USB-6259 BNC). In real experiment
it is nearly impossible to build pure Hamiltonian system (the resistance of cables and capacitors is small but
positive), so in case R1 is absent the circuit is slightly damped and after su�cient time we observe converges
of the trajectory to one of steady states. Nevertheless, this time is long enough to observe dynamics shown
in numerical investigation in previous Section.

In Figure 5 we present comparison of experimental (a,b) and numerical (c,d) time traces of x1(t) for
nearly Hamiltonian system with small positive damping (absence of R1). After application of initial pertur-
bation, system starts to behave chaotically (see zooms in Figure 5(b,d)), then we observe a slow decrease
of amplitude. When τ = 320 we see a transition from the chaotic motion to the quasiperiodic oscillations
around one of the stable steady state. After long time (out of range of acquisition) circuit reaches equilibrium
(x10 = x30 = 1.0, x20 = x40 = 0.0) . For numerical calculation we take damping value b = 0.0065, which is
small value (logarithmic decrement is equal to ∆ = 1.67 × 10−4). The experimental results are rescaled to
dimensionless values.

In Fig. 6 we present Du�ng oscillators with small negative damping. The damping in circuits (see 4(a))
is introduced by green connection with resistor R1 = 2.5[MΩ]. The negative damping �rstly compensate the
positive internal damping (always present in the system) and secondly pump energy to the system. Originally
both Du�ng systems are in equilibrium, then we perturb system similarly as in the case of positive damping.
In Fig. 6 we present comparison of experimental (a,b) and numerical (c,d) time traces of x1(t). In numerical
calculation we used b = −0.01. The evolution of system starts from chaotic behavior (see zooms in Fig.
6(b,d)) then amplitudes increase due to supply of energy by negative damping. For τ ≈ 80 we observe the
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Figure 4: Scheme (a) and photo (b) of the analyzed of two coupled Du�ng systems electrical realization .
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Figure 5: Time series x1(t) of nearly Hamiltonian system with positive damping (absence of R1) in (a) experimental results
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transition to quasiperiodic motion. The voltage amplitude in experimental circuit cannot escape to in�nity
as trajectory in the case of numerical studies. The system is powered by a symmetric ±15 [V] operational
ampli�ers, in our experimental setup we use ampli�ers LM358. When one of the voltage amplitude reaches
13.8 [V] the saturation point of operational ampli�ers is achieved. For this critical value signals are cut by
operational ampli�ers and the dynamics of the system is no more described by previously derived equations
7. In our case the signals δV1,2 reach saturation for τ = 220, hence we show system evolution up to this
value. In theoretical studies of operational ampli�ers one can �nd formula |USaturation| = |0.9UPower|, which
perfectly �t to our experimental results.

6. Conclusions

To summarize, this paper describes the dynamics of two coupled nearly Hamiltonian Du�ng oscillators
realized by electronic circuit. We investigate the properties of quasiperiodic and chaotic trajectories for
di�erent energy levels. We show that in the weakly perturbed near Hamiltonian system with small positive
or negative damping the chaotic set in the phase space is not stable and is replaced by the chaotic saddle. The
stable �xed points become attracting (positive damping) or repelling (negative damping) �xed points, and
all KAM curves are destroyed and are replaced by unstable tori. Although transient chaotic motion generally
exists, the phase trajectory tends to one of the �xed points or escapes to in�nity. In the considered system
we observe transient chaos both in the neighborhood of chaotic saddle and unstable tori in the wide range
of system parameters both in the numerical simulations and the experiments using electronic circuit. The
qualitative change in the time series of the transient Lypaunov exponents indicates the transition between
two types of transient chaos. The complete destruction of persistent chaos when a weak dissipation is added
to a near-integrable Hamiltonian system is typical and robust behavior.
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