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We consider the synchronization of two clocks which are accurate (show the same time) but have

pendulums with different masses. We show that such clocks hanging on the same beam beside the

complete (in-phase) and antiphase synchronizations perform the third type of synchronization in

which the difference of the pendulums’ displacements is a periodic function of time. We identify this

period to be a few times larger than the period of pendulums’ oscillations in the case when the beam

is at rest. Our approximate analytical analysis allows to derive the synchronizations conditions,

explains the observed types of synchronizations, and gives the approximate formula for both the

pendulums’ amplitudes and the phase shift between them. We consider the energy balance in the

system and show how the energy is transferred between pendulums via oscillating beam allowing

pendulums’ synchronization. VC 2011 American Institute of Physics. [doi:10.1063/1.3602225]

Synchronization in coupled dynamical systems is associ-

ated with the emergence of collective coherent behavior

between identical or similar subsystems. The first reported

observation of this phenomenon is the Huygens’ pendulum

clocks experiment in which antiphase synchronization of

clocks’ pendulums has been observed. An important step

in understanding of the synchronization is to identify how

the energy is transferred between the subsystems. Based

on the energy balance we derive approximate analytical

formulas which explain both in-phase and antiphase syn-

chronization of the clocks. Additionally, we show the possi-

bility of the long period generalized synchronization and

chaotic behavior of the pendulums.

I. INTRODUCTION

In 1665, C. Huygens noticed the antiphase synchroniza-

tion of two pendulum clocks mounted together on the same

beam (Huygens, 1665). This was one of the first observations

of the phenomenon of the coupled harmonic oscillators, which

have many applications in physics (Pikovsky et al., 2001;

Blekham, 1988). Recently, this idea has been rediscussed by a

few groups of researchers who tested Huygens’ idea (Pogrom-

sky et al., 2003; Bennet et al., 2002; Senator, 2006; Dilao,

2009; Kumon et al., 2002; Fradkov and Andrievsky, 2007;

Pantaleone, 2002; Ulrichs et al., 2009; Czolczynski et al.,
2009a). To explain Huygens’ observations, special experimen-

tal devices have been built. One of them (Bennet et al., 2002)

consists of two interacting pendulum clocks hanged on a heavy

support which was mounted on a low-friction wheeled cart.

The device moves by the action of the reaction forces gener-

ated by the swing of two pendulums and the interaction of the

clocks occurs due to the motion of the clocks’ base. It has been

shown that to repeat Huygens’ results, high precision (the pre-

cision that Huygens certainly could not achieve) is necessary.

Another device, the so-called “coupled pendulums of the

Kumamoto University” (Kumon et al., 2002), consists of two

pendulums which suspension rods are connected by a weak

spring, and one of the pendulums is excited by an external

rotor. The numerical results of Fradkov and Andrievsky (2007)

show simultaneous approximate in-phase and anti-phase syn-

chronization. Both types of synchronization can be obtained

for different initial conditions. Additionally, it has been shown

that for small difference in the pendulums’ frequencies they

may not synchronize. Finally, in Czolczynski et al. (in press),

it has been shown that two real mechanical clocks when

mounted to the horizontally moving beam can synchronize

both in phase and antiphase.

In this paper, we consider the synchronization of two

clocks which have pendulums with the same length but dif-

ferent masses. Such clocks are accurate, i.e., show the same

time as both pendulums have the same length. We show that

two such clocks hanging on the same beam beside the com-

plete (in-phase) and antiphase synchronizations already dem-

onstrated in Blekham (1988), Bennet et al. (2002), and

Czolczynski et al. (in press) perform the third type of syn-

chronization in which the difference of the pendulums’ dis-

placements u1-u2 is a periodic function of time. We identify

this period to be larger than the period of pendulums’ oscilla-

tions in the case when beam M is at rest. This type of gener-

alized synchronization has been called a long period
synchronization. We perform an approximate analytical

analysis, which allows deriving the synchronizations condi-

tions, explains observed types of synchronizations, and gives

approximate formula for both the pendulums’ amplitudes

and phase shift between them. The energy balance in the sys-

tem allows to show how the energy is transferred between

the pendulums via the oscillating beam. Additionally, we

show that beside the periodic synchronous behavior clocks’

pendulums can perform chaotic oscillations.

This paper is organized as follows. Section II describes

the model of the clocks which has been used. In Sec. III, we

derive the energy balance of the synchronized pendulums.

Section IV presents the results of our numerical simulations,

describes the observed synchronizations states together with

the energy balance of the pendulums. Finally, we summarize

our results in Sec. V.
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II. MODEL

The analyzed system is shown in Figure 1; it consists of

the rigid beam and two pendulum clocks suspended on it. The

beam of mass M can move in a horizontal direction, and its

movement is described by coordinate x. The mass of the beam

is connected to the refuge of a linear spring and linear damper

kx and cx. Clocks’ pendulum consists of the light beam of the

length l and mass mounted at its end. We consider the pendu-

lums with the same length l but different masses m1 and m2.

The same length of both pendulums guarantee that the clocks

are accurate, i.e., both show the same time. The motion of the

pendulums is described by angles u1 and u2 and is damped

by dampers (not shown in Figure 1) with damping coefficients

cu1 and cu2. The damping coefficients cu1,2 are proportional

to the pendulums’ masses m1,2. This proportionality causes

that in the lack of forcing (when the clock is not winded), the

oscillations of both pendulums decay with the same speed.

The pendulums are driven by the escapement mechanism

described in details in Huygens (1673), Rowlings (1944),

Lepschy et al. (1993), Roup et al. (2003), Moon and Stiefel

(2006), and Czolczynski et al. (2009b). Notice that when the

swinging pendulums do not exceed certain angle cN, the

escapement mechanisms generate the constant moments MN1

and MN2 (proportional to the pendulum masses m1,2).

This mechanism acts in two successive steps, i.e., the first

step is followed by the second one and the second one by the first

one (the detailed description of the escapement mechanism has

been given in our previous work (Czolczynski et al., 2009b)). In

the first step if 0<ui < cN (i¼ 1,2), then MDi ¼MNi and when

ui< 0, then MDi¼ 0. For the second stage, one has for

�cN<ui< 0 MDi¼�MNi and for ui> 0, MDi¼ 0. The energy

supplied by the escapement mechanic balance the energy dissi-

pated due to the damping. The parameters of this mechanics

have been chosen in the way that for the beam M at rest both

pendulums perform oscillations with the same amplitude. Typi-

cally for pendulum clocks that oscillate with amplitude smaller

then 2p=36 and for clocks with long pendulums like marine

clocks, this amplitude is even smaller (Rowlings, 1944).

The equations of motion are as follows:

mil
2 €ui þ mi€xl cos ui þ cui _ui þ migl sin ui ¼ MDi ; (1)

M þ
X2

i¼1

mi

 !
€xþ cx _xþ kxxþ

X2

i¼1

mil

� €ui cos ui � _u2
i sin ui

� �
¼ 0; (2)

i¼ 1,2. Equations (1) and (2) describes the dynamical system

which performs the self-excited oscillations (Andronov

et al., 1966).

Clocks are designed in such a way that the pendulums

perform periodic motion with a period 2p=a where a is con-

stant. The escapement mechanism provides the necessary

amount of energy to compensate the dissipation and makes

the pendulum motion periodic. Under these assumption in

the state of phase or antiphase synchronization, the motion

of the clock’s pendulums has been approximated by

ui ¼ Ui sin atþ bið Þ; (3)

and

_ui ¼ aUi cos atþ bið Þ;
€ui ¼ �a2Ui sin atþ bið Þ:

(4)

Our numerical simulations show that continuous solution

given by Eq. (3) is a good approximation of the pendulums’

oscillations calculated from discontinuous Eqs. (1) and (2) in

the case of both identical and nonidentical clocks. Substitut-

ing Eqs. (3) and (4) into Eq. (2) one gets

M þ
X2

i¼1

mi

 !
€xþ cx _xþ kxx

¼
X2

i¼1

ðmila
2Ui sinðatþ biÞ þ mila

2U3
i

� cos2ðatþ biÞ sinðatþ biÞÞ: (5)

Considering cos2a sin a ¼ 0:25 sin aþ 0:25 sin 3a; and denoting

U ¼ M þ
X2

i¼1

mi; F1i ¼ mila
2ðUi þ 0:25U3

i Þ;

F3i ¼ 0:25mila
2U3

i ; (6)

we have

U€xþ cx _xþ kxx ¼
X2

i¼1

F1i sinðatþ biÞ þ F3i sinð3atþ 3biÞð Þ:

(7)

Assuming the small value of the damping coefficient cx,

Eq. (7) can be rewritten in the following form:

x ¼
X2

i¼1

X1i sinðatþ biÞ þ X3i sinð3atþ 3biÞð Þ; (8)

where

X1i ¼
F1i

kx � a2U
¼ mila2ðUi þ 0:25U3

i Þ
kx � a2U

;

X3i ¼
F3i

kx � 9a2U
¼ 0:25mila2U3

i

kx � 9a2U
:

(9)

Equation (7) implies the following acceleration of the beam

M:

€x ¼
X2

i¼1

A1i sinðatþ biÞ þ A3i sinð3atþ 3biÞð Þ; (10)

FIG. 1. The model of the system – two pendulum clocks are mounted to the

beam which can move horizontally.
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where

A1i ¼ �
mila4ðUi þ 0:25U3

i Þ
kx � a2U

;

A3i ¼ �
0:25mila4U3

i

kx � 9a2U
:

(11)

Notice that Eq. (11) consists of the first and third harmonic

components only.

III. ENERGY BALANCE OF THE CLOCKS’
PENDULUMS

Multiplication of both sides of Eq. (1) by the angular ve-

locity of the i-th pendulum gives

mil
2 €ui _ui þ migl _ui sin ui ¼ MDi _ui � cui _u2

i � mi€xl cos ui _ui:

(12)

In the case of the periodic motion of the pendulums after

integration, Eq. (12) gives the energy balance of the i-th
pendulumðT

0

mil
2 €ui _uidtþ

ðT

0

migl _ui sin uidt

¼
ðT

0

MDi _uidt�
ðT

0

cui _u2
i dt�

ðT

0

mi€xl cos ui _uidt: (13)

The left hand side of Eq. (13) represents the decrease of the

total energy of the i-th pendulum. In the case of the periodic

behavior of the system (1,2), this decrease is equal to zero, soðT

0

mil
2 €ui _uidtþ

ðT

0

migl _ui sin uidt ¼ 0: (14)

The work done by the escapement mechanism during tone

period of pendulum’s oscillations can be expressed as

WDRIV
i ¼

ðT

0

MDi _uidt ¼ 2

ðcN

0

MNidui ¼ 2MNicN: (15)

As we have already assumed this work is proportional to the

mass of the pendulum and does not depend on the pendu-

lum’s displacement u1,2 (u1,2> cN) and velocity. Energy dis-

sipated in the damper is given by

WDAMP
i ¼

ðT

0

cui _u2
i dt

¼
ðT

0

cuia
2U2

i cos2ðatþ biÞdt

¼ pacuiU
2
i : (16)

(In the integration we used Eq. (4) and the relationÐ T
0

cos at cos atdt ¼ 0:5 T ¼ p
a:)

The last component of Eq.(13) represents the energy

transferred from the i-th pendulum to the beam M (pendulum

looses part of its energy to force the beam to oscillate), so

we have

WSYN
i ¼

ðT

0

mi€xl cos ui _uidt: (17)

Substituting Eqs. (15)–(17) into Eq.(13) one obtains energy

balance for the i-th pendulum.

WDRIV
i ¼ WDAMP

i þWSYN
i : (18)

Now let us consider the properties of Eq. (18) in a few spe-

cial cases of the pendulums synchronization.

A. Energy balance during the anti-phase
synchronization (identical pendulums)

In the case of the antiphase synchronization of two iden-

tical pendulums the beam M is in rest (Czolczynski et al.,
2009a,b). There is no energy transfer between pendulums

and the beam so Eq. (18) has the form

WDRIV
i ¼ WDAMP

i : (19)

This balance for two clocks’ pendulums is illustrated in Figure

6(a). Substituting Eqs. (15) and (16) into Eq. (19) one gets

2MNicN ¼ pacuiU
2
i ; (20)

so one gets the expression

Ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MNicN

pacui

s
(21)

for the amplitude of the pendulum’s oscillations.

B. Energy balance during the phase synchronization
(pendulums with different masses)

In the case of two nonidentical clocks (with different

pendulums masses) mounted to the beam M one can observe

phase synchronization of the pendulums. The beam performs

horizontal oscillations and the energy WSYN
i is not equal zero.

Substituting pendulum’s velocity Eq. (4), beam’s accelera-

tion Eq. (10) into Eq. (18) and taking into account the simpli-

fication cosui¼ 1.0, one gets the expression for the energy

transferred from i-th pendulum to the beam

WSYN
i ¼

ðT

0

ðmil€x cos uiÞ _uidt

¼
ðT

0

mil
X2

j¼1

A1j sinðatþ bjÞ þ A3j sinð3atþ 3bjÞ
� � !

� aUi cosðatþ biÞdt: (22)

After further calculations one gets

WSYN
i ¼ milaUi

X2

j¼1

A1j
p
a
� cos bj sin bi þ sin bj cos bi

� �

¼ milaUi

X2

j¼1

Aj
p
a

sinðbj � biÞ: (23)

and after substitution of Eq. (11),

WSYN
i ¼ �mil

2a4pUi

kx � a2U

X2

j¼1

mjðUj þ 0:25U3
j Þ sinðbj � biÞ:

(24)
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Setting b1¼ 0.0 (one of the phase angles can be arbitrarily

chosen) and taking into consideration the following simplifi-

cation Ui þ 0:25U3
i � Ui; Eq. (24) can be rewritten as

WSYN
1 ¼ �m1l2a4pU1

kx � a2U
m2U2 sin b2 ¼ WSYN ;

WSYN
2 ¼ m2l2a4pU2

kx � a2U
m1U1 sin b2 ¼ �WSYN:

(25)

Equation (25) shows that both synchronization energies are

equal and so the energy balance of both pendulums

(Eq. (18)) can be written as

WDRIV
1 ¼ WDAMP

1 þWSYN

WDRIV
2 þWSYN ¼ WDAMP

2 :
(26)

Substituting Eqs. (15) and (16) and (25) into Eq. (26) one gets

2MN1cN ¼ pacu1U
2
1 �

m1l2a4pU1

kx � a2U
m2U2 sin b2;

2MN2cN ¼ pacu2U
2
2 þ

m2l2a4pU2

kx � a2U
m1U1 sin b2;

(27)

so

sin b2 ¼
2MN2cN � pacu2U

2
2

m2l2a4pU2

kx � a2U
m1U1

: (28)

Equations (27) and (28) give relation between the pendulums

amplitudes U1 and U2 and the phase angle b2.

C. Energy dissipated by the cx-damper

Energy dissipated by the cx–damper during the period of

system oscillations is given by

WDAMP
b ¼

ðT

0

cx _x2dt: (29)

Assuming the harmonic oscillations of the beam M which

are characterized by the amplitude X, i.e.,

x ¼ X sinðatþ #Þ; _x ¼ aX cosðatþ #Þ; (30)

where # is a phase angle, which determines the phase shift

of the beam motion in respect of first pendulum (with phase

angle b1). Comparing Eqs. (8) and (30), assuming b1¼ 0 and

taking into consideration, only first harmonic one gets fol-

lowing formula:

# ¼ arctan
X12

X11 þ X12 cos b2

� �
:

Substituting Eq. (30) into Eq. (29) one gets

WDAMP
b ¼

ðT

0

cx _x2dt ¼ cxapX2: (31)

D. The case of the small damping of the pendulums

Let us consider the particular case when the damping of the

pendulums is small, i.e., cui are small, and such is the

moment generated by the escapement mechanism. We have

WDRIV
1

WSYN
� 0:0;

WDRIV
2

WSYN
� 0:0;

WDAMP
1

WSYN
� 0:0;

WDAMP
1

WSYN
� 0:0:

(32)

Taking into consideration Eqs. (27) and (32), Eq.(26) has the

form

WSYN
1 ¼ �m1l2a4pU1

kx � a2U
m2U2 sin b2 ¼ 0:0;

WSYN
2 ¼ m2l2a4pU2

kx � a2U
m1U1 sin b2 ¼ 0:0:

(33)

Equations (33) are fulfilled in two cases: (i) b2¼ 0.0�, so as

b1¼ 0.0� indicates the state of complete synchronization,

pendulums behave exactly in the same way and there is no

transfer of energy between them and (ii) b2¼ 180.0�, so as

b1¼ 0.0� indicates the state of antiphase synchronization.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Synchronization of two identical pendulums

In our numerical simulations, Eqs. (1) and (2) have been

integrated by the Runge-Kutta method. The initial conditions

have been set as follows: (i) for the beam x(0)¼ _xð0Þ¼ 0, (ii)

for the pendulums the initial conditions u1ð0Þ; _u1ð0Þ have

been calculated from the assumed initial phase differences

b1 and b2 (in all calculations b1¼ 0 has been taken) using

Eq. (3), i.e., u1ð0Þ ¼ 0, _u1ð0Þ ¼ aU, u2ð0Þ ¼ U sin b2,

_u2ð0Þ ¼ aU cos b2: Stability of the obtained synchronous

states has been investigated using the variational equations

as described in (Czolczynski et al., 2009a,b).

Depending on initial conditions, one can observe two dif-

ferent types of synchronization in the considered system. Two

pendulums with identical masses and periods of oscillations

can obtain the state of complete synchronization when

(u1¼u2) and beam M oscillates in antiphase to the pendulums

or the state of antiphase synchronization when (u1¼�u2) and

beam M is at rest (Blekhman, 1988; Bennet, et al., 2002;

Czolczynski et al., in press).

Both types of synchronization are shown in Figures 2(a)–

2(c). In our numerical simulations, we consider the following

parameter values: pendulums’ masses—m1¼m2¼ 1.0 [kg],

the length of the pendulums l¼ g=4p2¼ 0.2485 [m] (it has

been selected in such a way when the beam M is at rest period

of pendulum oscillations is equal to T¼ 1.0 [s] and oscillations

frequency to a¼ 2p [s�1]), g¼ 9.81 [m=s2] is an acceleration

due to the gravity, beam mass M¼ 10.0 [kg], damping coeffi-

cients cu1¼ cu2¼ 0.0083 [Ns] and cx¼ 1.53 [Ns=m], and stiff-

ness coefficient kx¼ 4.0 [N=m]. When the displacements of

the pendulums are smaller than cN¼ 5.0�, escapement mecha-

nisms generate driving moments MN1¼MN2¼ 0.075 [Nm],

allow pendulums to oscillate with amplitude U1¼U2¼U
¼ 0.2575 (�14.75�) when beam M is at rest.

Figure 2(a) presents the complete synchronization of the

pendulums of both clocks, i.e., pendulums’ displacements

are the same u1 ¼ u2 and the displacements of the beam x
(shown in 10 times magnification). The time series are shown
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in stationary state after the decay of transients. Time on the

horizontal axis is given in the following way t¼NT, where

N¼ 1,2,3,… and T is a period of pendulum’s oscillations

when the beam is at rest. Notice that the numerically esti-

mated value of the amplitude U1,2¼ 0.283 is approximately

equal to the value calculated from Eq. (21). In Figure 2(b), we

present the example of antiphase synchronizations, i.e.,

u1(t)¼u2(t þ 0.5T) (or u1(t)¼�u2(t)) and the beam M is at

rest as x¼ 0.0. Both types of synchronization have been

obtained for the same parameter values but different initial

conditions. Figure 2(c) shows the basins of attraction of both

types of synchronization in the (b10, b20) plane. White and

grey (blue online) colors indicate initial conditions leading,

respectively, to complete and antiphase synchronization. In

the case of complete synchronizations, both clocks are signifi-

cantly faster (nearly 6 minutes per hour – Figure 2(a)) with

reference to the clock mounted to the nonmoving base. This

difference occurs as the result of the pendulums’ motion in

antiphase to the beam. In the case of antiphase synchroniza-

tion (Figure 2(b)), the clocks remain accurate.

B. Synchronization of two pendulums with different
masses

When the clocks have pendulums with different masses

(m1=m2), the considered system shows three different types

of synchronous behavior. The first one is the complete syn-

chronization (u1¼u2) already observed in the case of

identical systems in Sec. A. The second one is the phase

synchronization which evolves from the anti-phase synchro-

nization of the identical systems. For nonidentical masses of

the pendulums, the phase difference between pendulums

decreases and is smaller than p (180�) and contrary to the

case of identical clocks the beam M is not at rest and pendu-

lums’ amplitudes are not equal.

Different types of synchronization states and their basins

of attraction are presented in Figures 3(a)–3(d). In our numeri-

cal simulations, we consider the following parameter values:

l¼ g=4p2¼ 0.2485 [m], M¼ 10.0 [kg], cx¼ 1.53 [Ns=m],

kx¼ 4.0 [N=m], m1¼ 1.0 [kg], m2¼ 2.65 [kg], cN¼ 5.0o,
cu1¼ 0.0083 [Ns], cu2¼ 0.0083�m2 [Ns], MN1¼ 0.075

[Nm], and MN2¼ 0.075�m2 [Nm]. Figure 3(a) presents the

phase synchronization in which the pendulums’ displacements

u1 and u2 are shifted by the angle close to p but smaller than

this value. Similarly, the oscillations of the beam x are phase

shifted to the pendulums’ oscillations by the value close but

not equal to p=2. The first pendulum (with smaller mass m1)

exhibits the oscillations with the larger amplitude (than in the

case when beam M is at rest). The analysis of Sec. III explains

this phenomenon showing that this pendulum is driven by the

second pendulum via beam M (the part of pendulum 2 energy

is transferred to pendulum 1). As the result, the amplitude of

the second pendulum’s oscillations decreases.

In the considered system besides the complete and phase

synchronization, one can observe the synchronization state

in which u1–u2 is a periodic function. As the period of this

FIG. 2. (Color online) Synchronization

of two identical pendulum clocks’:

m1¼m2¼ 1.0 [kg], l¼ g=4p2¼ 0.2485

[m], M¼ 10.0 [kg], cu1¼ cu2¼ 0.0083

[Ns], cx¼ 1.53 [Ns=m], kx¼ 4.0 [N=m],

cN¼ 5.0�, MN1¼MN2¼ 0.075 [Nm];

(a,b) time series of pendulums u1, u2

and beam x displacements, time on the

horizontal axis is given in the following

way t¼NT, where N¼ 1,2,3,… and

T¼ 1[s], (a) complete synchronization

(u1¼u2) pendulums are in antiphase to

the oscillations of the beam M, (b) anti-

phase synchronization (u1¼�u2),

beam M is at rest, (c) basins of attraction

of complete synchronization (white

color) and antiphase synchronization

(gray color, blue color online) in b10-b20

plane, x(0)¼ 0.0, _xð0Þ ¼ 0:0, ui0 ¼ U
sin bi0; _ui0 ¼ aU cos bi0:
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function Tm is larger than T (the period of pendulums’ oscilla-

tions in the case when beam M is at rest), this type of general-

ized synchronization is called a long period synchronization.

(The long period synchronization can be a special case of

n:m synchronization observe in the self-excited continuous

systems. Since the system (1-2) is discontinuous and we have

not proved the existence of the quasiperiodic solution on the

torus in it we decide to use other name.) Figure 3(b) presents

the example of this type of synchronization obtained for the

initial conditions b10¼ 1.0� and b20¼ 90.0�. One can observe

that Tm is equal to 7T. Long period synchronization can be

explained by the periodic decrease of the amplitude U1 of the

pendulum 1 oscillations. When this amplitude is smaller than

the minimum value U1¼ cN, the escapement mechanism is

switched. These switches off introduce the perturbation to the

system. The basins of attraction of three coexisting attractors

are shown in Figure 3(c) in b10–b20 plane. White and light

gray (blue online) colors indicate initial conditions leading

respectively to complete and antiphase synchronization while

the region shown in dark gray (red online) color indicates ini-

tial conditions leading to long period synchronization. Our

calculations show that the dark gray basin of long period syn-

chronization appears at m2� 2.4 [kg]. With the increase of

m2 the basin of phase synchronization becomes smaller and it

finally disappears for m2� 2.8 [kg]. In the considered system,

we observed long period synchronization states with different

Tm (the largest observed Tm is equal to 51T). Long period syn-

chronization can coexist with the chaotic behavior of the

clocks’ pendulums. (This type of clocks’ behavior is the topic

of our current studies. It has been shown that the system can

be chaotic as the largest Lyapunov exponent estimated by the

synchronization method (Stefanski and Kapitaniak, 2003) is

positive. Additionally we observe the co-existence of the dif-

ferent chaotic and long period synchronization states with

very small basins of attraction. Details of this results will be

published elsewhere. Chaotic behavior of the pendulum clock

is also predicted and described in Moon and Stiefel (2006)

but model of the clock has been used.) The example of such a

coexistence is shown in Figure 3(d) (m2¼ 3.105 [kg]) where

the basins of complete (white color), long period with

Tm¼ 13T (dark gray, red online) synchronization and chaotic

behavior (black color) are shown.

In the case of phase synchronization both clocks are

slightly slower (nearly 20 [s] per hour – Figure 3(a)) in refer-

ence to the clock mounted to the nonmoving base. The same

difference occurs in the case of long period synchronization

(25 [s] per hour – Figure 3(b)).

In Figures 4(a)–4(c) we present the bifurcation diagram

of the system (1,2). The mass of pendulum 2-m2 has been

taken as a control parameter. On the vertical axis, the dis-

placements of the pendulums u1, u2 the beam displacement

x (for better visibility x has been multiplied by 10); values

u2 and x have been taken at the time of maximum values of

u1, i.e., when _u1 changes the sign from positive to negative

values. In Figures 4(a) and 4(b), the bifurcation diagrams

for, respectively, increasing and decreasing values of m2 are

shown. In Figure 4(a), we start from the antiphase synchroni-

zation of identical systems (i.e., m2 ¼ 1.0 [kg]). The antiphase

FIG. 3. (Color online) Synchronization

of two pendulums with different masses:

m1¼ 1.0 [kg], l¼ g=4p2¼ 0.2485 [m],

M¼ 10.0 [kg], cx¼ 1.53 [Ns=m],

kx¼ 4.0 [N=m], cN¼ 5.0�, cu1¼ 0.0083

[Ns], cu2¼ 0.0083�m2 [Ns], MN1

¼ 0.075 [Nm], MN2¼ 0.075�m2 [Nm];

(a) and (b) time series of pendulums u1,

u2 and beam x displacements, time on

the horizontal axis is given in the follow-

ing way t¼NT, where N¼ 1,2,3,… and

T¼ 1[s], (a) phase synchronization:

m2¼ 2.65 [kg], b10¼ 10�, b20¼ 130�;
(b) long period synchronization:

m2¼ 2.65 [kg], Tm � 7T, b10¼ 1�,
b20¼ 90�; (c) basins of attraction of dif-

ferent types of synchronization: com-

plete synchronization (white), phase

synchronization (light grey, blue color

online), long period synchronization

(dark gray, red color online) in b10-b20

plane: x(0)¼ 0.0, _xð0Þ ¼ 0:0, ui0

¼ U sin bi0; _ui0 ¼ aU cos bi0; m2¼ 2.65

[kg], (d) basins of attraction of different

types of synchronization: complete syn-

chronization (white), long period syn-

chronization (dark gray, red color online)

chaotic behavior (black) in b10-b20 plane:

x(0)¼ 0.0, _xð0Þ ¼ 0:0, ui0 ¼ U sin bi0;
_ui0 ¼ aU cos bi0; m2¼ 3.105 [kg].
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synchronization is replaced by the phase synchronization with

decreasing phase shift which can be observed in the interval

1.0 [kg]<m2<12.3 [kg]. For larger values of m2, one observes

long periodic synchronization and chaotic oscillations of the

clocks’ pendulums (12.3 [kg]<m2<15.25 [kg]). This behavior

is replaced by complete synchronization for m2>15.25 [kg].

Figure 4(b) shows that starting from the complete synchroniza-

tion for m2¼ 26 [kg] and decreasing the values of m2 we

observe this type of synchronization in the whole interval 1.0

[kg]<m2<26.0 [kg]. In Figure 4(c), we start from the chaotic

oscillations for m2¼ 15.0 [kg] and decrease the value of the

control parameter m2. Chaotic oscillations with the windows of

long period synchronization are preserved in the interval 2.9

[kg]<m2<15.0 [kg] and for smaller values of m2 are replaced

by complete synchronization.

Figures 4(a)–4(c) confirms the coexistence of different

types of synchronous behavior. For 1.0 [kg]<m2<2.9 [kg],

complete and phase synchronizations coexist. In the interval

2.9 [kg]<m2<12.3 [kg], we observe complete, phase and

long period synchronization (with different n). For larger

values of m2 (12.3 [kg]<m2<15.25 [kg]), phase synchroniza-

tion disappears, and we observe complete and long period

synchronization. Finally, for m2>15.25, only the complete

synchronization is possible.

The system behavior for m2 smaller than m1 is discussed

in Figures 5(a) and 5(b). Bifurcation diagram is presented in

Figure 5(a) where we start from the phase synchronization

for m2¼ 1.0 [kg] and decrease the value of control parameter

up to m2¼ 0.1 [kg]. Phase synchronization is preserved in

the interval 1.0 [kg]>m2>0.285 [kg] (it coexists with com-

plete synchronization). For smaller values of m2, we observe

the complete synchronization only. The disappearance of the

phase synchronization is explained in Figure 5(b) where we

present the time series of the pendulums’ displacements u1

and u2 for m2¼ 0.285 [kg] (close to the threshold value).

Notice that the amplitude of pendulum 1 is only slightly

larger that cN¼ 5.0�. Further decrease of m2 results in the

switch off of the escapement mechanism and allows the tran-

sition to the complete synchronization. For m2<m1, long pe-

riod synchronization has not been observed. Notice that in

Figure 5(b), the phase shift b2 between pendulums’ displace-

ments is smaller than 180.0� and approximately equal to

126�. Similarly, as in the example of Figure 3(a), the differ-

ence in the pendulums’ amplitudes is created by the energy

transfer from pendulum 1 to pendulum 2, as described in

Sec. III in Eq.(26).

To explain why the antiphase synchronization of the

identical clocks is replaced by the phase synchronization of

nonidentical ones, let us consider the energy balance of the

synchronized states shown in Figures 6(a) and 6(b).

In the case of antiphase synchronization of identical

pendulums (Figure 6(a)), we have two independent streams

of energy (both fulfill Eq. (19)), as both pendulums dissipate

the same amount of energy as they gain from the escapement

FIG. 4. (Color) Bifurcation diagrams of

system (1,2): u1, u2 and x versus control

parameter m2: U1 � cN¼ 5.0�, m1¼ 1.0

[kg], l¼ g=4p2¼ 0.2485 [m], M¼ 10.0

[kg], cx¼ 1.53 [Ns=m], kx¼ 3.94

[N=m], cN¼ 5.0�, cu1
¼ 0.0083 [Ns],

cu2
¼ 0.0083�m2 [Ns], MN1¼ 0.075

[Nm], MN2¼ 0.075�m2 [Nm]; (a) m2

increases from 1 to 26.0, (b) m2

decreases from 26.0 to 1.0, (c) m2

decreases from 15.0 to 1.0.
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mechanism. In Figure 6(b), we presented the energy balance

of the pendulums with different masses in the state of phase

synchronization. We consider the parameter values of Figure

5(b) and numerically calculated pendulum’s amplitudes

U1¼ 0.121 and U2¼ 0.548. The streams fulfill Eq. (26). The

W1
DRIV transferred to the first pendulum (one with smaller

amplitude) is divided in to the energy dissipated in the

damper cu1
and energy WSYN transferred to the second pen-

dulum. Notice that the phase shift b2 calculated from Eq.

(28) is approximately the same as the numerically calculated

value b2 ¼ 126� (see Figure 5(b)). Eqs. (15), (16), and (25)

allow estimation of the energies: Wi
DRIV, Wi

DAMP, and Wi
SYN.

The comparison of analytical and numerical results is pre-

sented in Table I.

The differences between analytical and numerical

results are small (values W1
DRIV and W2

DRIV are exact) what

confirm the accuracy of our energy balance approach. The

value of WDAMP
b ¼ 0:00029 [Nm] is significantly smaller

than the values of other energies and is not considered in

Figures 6(a) and 6(b) and Table I.

The analytical studies of Secs. II and III are based on the

assumption that the periods of pendulums’ oscillations are

constant and equal to 2p=a. When clocks are coupled via a

movable beam pendulums’ periods are not constant and

depend on the pendulums’ masses, the variations of this

period are small (for example, smaller than 5% for the

m2=m1¼ 11 and parameters of Table I).

V. CONCLUSIONS

We consider the synchronization of two clocks which

have pendulums with the same length but different masses.

As both pendulums have the same length both clocks are

accurate, i.e., they show the same time. We show that two

such clocks hanging on the same beam can synchronize both

in-phase and anti-phase as has already been shown in Blek-

ham (1988), Bennet et al. (2002), and Czolczynski et al. (in

press), but contrary to that results we show that the third type

of synchronization in which the difference of the pendulums’

displacements u1-u2 is a periodic function of time. This pe-

riod Tm is larger than T (the period of pendulums’ oscilla-

tions in the case when beam M is at rest) p times, where p is

the integer dependent on the clock’s parameters. We call this

type of generalized synchronization a long period synchroni-

zation. Long period synchronization coexists with the cha-

otic behavior in which the oscillations of the clocks’

pendulums are uncorrelated and unpredictable.

Our approximate analytical analysis allows deriving the

synchronizations conditions which explain the observed

types of synchronizations and give formula for both the

FIG. 5. (Color online) (a) Bifurcation

diagram of system (1,2): u1, u2 and x
versus control parameter m2; m2

decreases from 1.0 [kg] to 0.1 [kg], (b)

time series of u1, u2 and x during the

phase synchronization: U1 � cN¼ 5.0�

m1¼ 1.0 [kg], l¼ g=4p2¼ 0.2485 [m],

M¼ 10.0 [kg], cx¼ 1.53 [Ns=m],

kx¼ 3.94 [N=m], cN¼ 5.0�, cu1
¼ 0.0083

[Ns], cu2
¼ 0.0083�m2 [Ns], MN1

¼ 0.075 [Nm], MN2¼ 0.075�m2 [Nm].

FIG. 6. Energy balance of pendulums:

(a) antiphase synchronization of identi-

cal pendulums – there is no transfer of

energy between pendulums, (b) phase

synchronization of the pendulums with

different masses: m1¼ 1.0 [kg] and

m2¼ 0.289 [kg] and U1 � cN¼ 5.0�–
pendulum 1 transfer energy to the pen-

dulum 2 via the beam M.
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pendulums’ amplitudes and phase shift between them. The

consideration of the energy balance in the system allows

showing the pendulum of the smaller mass transfer part of its

energy (gained through the escapement mechanism) to the

other pendulum via the oscillating beam.

In the synchronized state the clocks are not accurate (the

exception is the antiphase synchronization of the identical

clock when the beam is at rest). In the case of complete syn-

chronization, the clocks are significantly faster (in reference

to the clock mounted to the nonmoving base) as the result

the pendulums motion in antiphase to the beam. In the case

of phase synchronization and long period synchronizations,

the clocks are slightly slower.
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Numerical Analytical

W1
SYN

WSYN
1 ¼

ðT

0

m1€xl cos u1 _u1dt ¼ �0:0101½Nm� WSYN
1 ¼ �WSYN

2

W2
SYN

WSYN
2 ¼

ðT

0

m2€xl cos u2 _u2dt ¼ 0:0100½Nm� WSYN
2 ¼ 2m2l2a4pU1

kx � a2U
m2U2 sin b2 ¼ 0:0107½Nm�:

W1
DRIV

WDRIV
1 ¼ 2MN1cN ¼ 0:0131½Nm� WDRIV

1 ¼ 2MN1cN ¼ 0:0131½Nm�
W2

DRIV
WDRIV

2 ¼ 2MN2cN ¼ 0:0036½Nm� WDRIV
2 ¼ 2MN2cN ¼ 0:0036½Nm�

W1
DAMP

WDAMP
1 ¼

ðT

0

cu1 _u2
1dt ¼ 0:0028½Nm� WDAMP

1 ¼ pacu1U
2
1 ¼ 0:0024½Nm�

W2
DAMP

WDAMP
2 ¼

ðT

0

cu2 _u2
2dt ¼ 0:0137½Nm� WDAMP

2 ¼ pacu2U
2
2 ¼ 0:0143½Nm�

023129-9 Why two clocks synchronize Chaos 21, 023129 (2011)

Downloaded 12 Jul 2011 to 212.51.207.130. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1098/rspa.2001.0888
http://dx.doi.org/10.1143/PTP.122.1027
http://dx.doi.org/10.1016/j.physa.2009.08.033
http://dx.doi.org/10.1063/1.3139117
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.03.016
http://dx.doi.org/10.1109/13.123411
http://dx.doi.org/10.1098/rsta.2006.1839
http://dx.doi.org/10.1119/1.1501118
http://dx.doi.org/10.1080/00207170310001632412
http://dx.doi.org/10.1016/j.jsv.2005.06.018
http://dx.doi.org/10.1016/S0960-0779(02)00095-4
http://dx.doi.org/10.1016/S0960-0779(02)00095-4
http://dx.doi.org/10.1063/1.3266924

	s1
	s2
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	F1
	E11
	s3
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	s3A
	E19
	E20
	E21
	s3B
	E22
	E23
	E24
	E25
	E26
	E27
	E28
	E29
	E30
	s3C
	E31
	s3D
	E33
	E34
	s4
	s4A
	s4B
	F2
	F3
	F4
	s5
	F5
	F6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	T1

