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We study synchronization of a number of pendulum clocks hanging from an elastically
fixed horizontal beam. It has been shown that after a transient, different types of synchro-
nization between pendulums can be observed; (i) the complete synchronization in which all
pendulums behave identically, (ii) pendulums create three or five clusters of synchronized
pendulums, (iii) anti-phase synchronization in pairs (for even n). We give evidence why the
configurations with a different number of clusters are not observed.
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In the 17th century the Dutch researcher Christian Huygens showed that a
couple of mechanical clocks hanging from a common support were synchronized.1)

Over the last three decades the subject of the synchronization has attracted the
increasing attention from different fields.2)−4) In Huygens experiment1),5)−9) clocks
(subsystems) are coupled thought elastic structure. Generally, this type of coupling
allows investigating how the dynamics of the particular subsystem is influenced by
the dynamics of other subsystems.10)−12) However, the precise dynamics of the n
clocks hanging from the common support is unknown. Here, we study a synchro-
nization problem for n pendulum clocks hanging from an elastically fixed horizontal
beam. Each pendulum performs a periodic motion which starts from different ini-
tial conditions. We show that after a transient, different types of synchronization
between pendulums can be observed; (i) the complete synchronization in which all
pendulums behave identically, (ii) pendulums create three or five clusters of synchro-
nized pendulums, (iii) anti-phase synchronization in pairs (for even n). Our results
demonstrate that other stable cluster configurations do not exist. We anticipate our
assay to be a starting point for further studies of the synchronization and creation of
the small-worlds13)−16) in the systems coupled by an elastic medium. For example,
the behavior of the biological systems (groups of humans or animals) located on
elastic structure could be investigated. In particular, a general mechanism for crowd
synchrony can be identified.

The large oscillations of London’s Millennium Bridge on the day it was opened
have restarted the interest in be dynamical behavior of the systems coupled by elastic
structure. The detailed theoretical and experimental explanation of the phenomena
observed by Huygens for two pendulum clocks has been presented.5)−9) In our pre-
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Fig. 1. The model of n pendulums hanging from an elastic horizontal beam.

vious works10)−12) we consider the dynamics of Duffing and van der Pol oscillators
suspended on the beam and identify a simple mechanism of mutual interaction lead-
ing to the periodization of initially chaotic systems. Finally, the assumption of the
inseparability of the bridge wobbling and crowd synchrony allows to explain the
behavior of Millennium Bridge.17),18)

In the current studies we consider a system shown in Fig. 1. The beam of
mass M can move in the horizontal direction x with the viscous friction given by a
damping coefficient cx. One side of the beam is attached to the base through the
spring with stiffness coefficient kx. The beam supports n identical pendulum clocks
with pendulums of the length l and mass m. The position of the i-th pendulum is
given by a variable φi and its oscillations are damped by viscous friction described
by damping coefficient cφ.

In the absence of damping and driving, the Lagrangian of the considered system
is

L =
1
2
(M + nm)ẋ2 + mẋl

n∑
i=1

cos φiφ̇i +
1
2
ml2

n∑
i=1

φ̇2
i + mgl

n∑
i=1

cos φi − 1
2
kx2, (1)

where i = 1, 2, . . . , n and g is a gravitational acceleration.
The system equations can be written in a form of Euler-Lagrange equations:

ml2φ̈i + cφφ̇i + mẍl cos φi + mgl sinφi = Mi,

(M + nm)ẍ +
n∑

i=1

(mlφ̈i cos φi − mlφ̇2
i sinφi) + cxẋ + kxx = 0 . (2)

The clock escapement mechanism represented by Mi provides the energy needed
to compensate the energy dissipation due to the viscous friction and to keep the
pendulum running. (The details on the escapement mechanisms can be found in
Refs. 19) and 20). This mechanism acts in two successive steps (the first step is
followed by the second one and the second one by the first one). In the first step,
if 0 < φi < γN , then Mi = MN and when φi < 0, then Mi = 0, where γN and MN

are constant values which characterize the mechanism. For the second stage one has
for −γN < φi < 0 Mi = −MN and for φi > 0 Mi = 0. Under these assumptions
dynamics of the pendulum clock is described by a self-excited oscillator with a limit
cycle21) (see also Refs. 7)–9)).
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Fig. 2. Cluster configurations for n = 11 pendulums; m = 1, l = g/4π2, cφ = 0.01, M = 1,

cx = 0.1M , kx = M , MN = 0.075, γN = π/36: (a) three cluster configuration; nI = 2, nII =

4, nIII = 5, (b) five cluster configuration; nI = 1, nII = 3 , nIII = 2, nIV = 1, nV = 4,

(c) symmetrical three cluster configuration; nI = 1, nII = 5, nIII = 5, (d) symmetrical five

cluster configuration; nI = 1, nII = 4, nIII = 1, nIV = 1, nV = 4.

In the case of the small oscillations one can assume that after the initial transients
the pendulums perform periodic limit cycle oscillations which can be approximately
described as

φi = Φ sin(αt + βi), (3)

where Φ, α and βi are respectively the amplitude, the frequency and the phase
difference. As all pendulums are the same, so Φ and α are the same for each of
them. The oscillations of the pendulums differ only by the phase difference βi.∗)

In our numerical simulations we consider n ≤ 30, m = 1, l = g/4π2, and
cφ = 0.01, so the frequency of pendulums oscillations α is equal to 2π. We assume
that the initial conditions for pendulums are given by the initial value of βi0, i.e.,
φi0 = Φ sinβi0 and φ̇i0 = αΦ cos βi0. The stiffness kx and damping cx coefficients are
assumed to be proportional to the beam mass M .

In Fig. 2 we plot the position of each of n = 11 pendulums in the phase space
φi, αφ̇i at the time when the first pendulum is moving through the equilibrium
position φ1 = 0 with the positive velocity φ̇1 > 0. Figure 2(a) shows configu-
ration of three clusters with respectively nI = 2, nII = 4, and nIII = 5 pendu-
lums. The pendulums in each cluster are synchronized. Figure 2(b) shows the

∗) In numerical simulations of Eqs. (1) and (2) we got: φi = 0.144 sin(αt+βi)+0.0033 sin 3(αt+

βi) + 6.75 ∗ 10−4 sin 5(αt + βi) + 3.2 ∗ 10−4 sin 7(αt + βi) + ... which clearly shows that the higher

harmonics are small and have small (negligible) influence on the system (2) motion.
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configuration with five clusters of respectively nI = 1, nII = 3, nIII = 2, nIV = 1,
and nV = 4 pendulums. In Fig. 2(c) the special case of the symmetrical three
clusters configuration with respectively nI = 1, nII = 5, and nIII = 5 pendu-
lums is shown. Figure 2(d) presents the symmetrical configuration of five clusters
nI = 1, nII = 4, nIII = 1, nIV = 1, and nV = 4 pendulums. For all considered n
besides the above configurations we have observed; (i) a complete synchronization,
(ii) desynchronous behavior of all pendula. In desynchronous regime the phase dif-
ference between pendulums is not constant and is changing chaotically. Additionally,
for even n anti-phase synchronization in pairs (for even n) is observed.

To study the stability of the observed steady states we add perturbations δi and
σ to the variables φi and x in Eq. (2) and obtain the following linearized variational
equation:

ml2δ̈i + mσ̈l cos φi + mlδi(g cosφi − ẍ sinφi) + cφδ̇i = 0 ,

(M + nm)σ̈ +
n∑

i=1

(mlδ̈i cos φi − mlφ̇2
i δi cos φi − mlφ̈i sinφi − 2mlφ̇iδ̇i sinφi)

+cxσ̇ + kxσ = 0 . (4)

The solution of Eq. (2) given by φi(t) and x(t) is stable when the solution of Eq. (4)
δi and σ tend to zero for t → ∞. All observed steady states are stable in a wide range
of the control parameter M as the solution of the variational equation (4) decays. In
the considered range of n we have not observed other stable cluster configuration.

The synchronization between the pendulums can be obtained as a result of the
interplay between the period of oscillations of the pendulums, the amplitude of the
beam oscillations and the phase difference between the motions of the pendulums
and the beam. In the simplest example of one pendulum hanging from the beam,
the beam motion which is in phase (out of phase) with motion of the pendulum
increases (decreases) the period of oscillations of the pendulum. In the case of n
pendulums hanging from the beam, the beam motion can temporarily increase or
decrease their period of oscillations allowing synchronization. One should notice here
that the described mechanism explains why it is impossible to observe the existence
of two groups of pendulums with unequal number of members which synchronize in
anti-phase, i.e., due to the unequal total mass of the pendulums in each group the
influence of the beam motion on each group cannot be the same. The beam in rest
cannot influence this behavior at all. The larger displacement of the beam implies
the larger influence of the pendulums behavior. The largest amplitude of the beam
oscillation occurs in the case of the complete synchronization of all pendulums. In the
case of even n, when we observe n/2 pairs of pendulums synchronized in anti-phase
the beam is in rest.

To give an explanation why only three and five cluster configurations are ob-
served we consider a horizontal displacement of the beam Under the assumption (3)
the second equation of Eq. (2) can be linearized to the following form:

(M + nm)ẍ + cxẋ + kxx =
n∑

i=1

(−mlφ̈i + mlφ̇2
i φi). (5)
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Substituting Eq. (3) in Eq. (5) and taking into consideration the relation cos2 α sinα =
1/4(sinα + 3 sin 3α), one gets

(M + nm)ẍ + cxẋ + kxx =
n∑

i=1

(
mlα2Φ sin(αt + βi)

+
1
4
mlα2Φ3(sin(αt + βi) + 3 sin 3(αt + βi))

)
. (6)

After the initial transient the solution x(t) of Eq. (6) can be expressed in the form

x(t) = A1

n∑
i=1

sin(αt + βi + ρ1) + A3

n∑
i=1

sin 3(αt + βi + ρ3). (7)

where A1, A3, ρ1 and ρ3 are constant.∗)
Besides the local minimum for the n/2 pairs of pendulums synchronized in anti-

phase (for even n) beam displacement x(t) given by Eq. (7) has local minima in
two cases; (i) when the sum of the first harmonic components is equal to zero, (ii)
when the sum of the first and the third harmonic components is equal to zero. It
is possible to show that the first case occurs for three cluster configuration and the
second one for five cluster configuration. The lack of other harmonics components
in Eq. (6) shows why the configurations with a number of clusters different from 3
or 5 are not observed.

Three cluster configuration (case (i)) with respectively nI , nII and nIII pendu-
lums in the successive cluster, occurs when angles βII and βIII fulfill the relation:

nI + nII cos βII + nIII cosβIII = 0,

nII sinβII + nIII sinβIII = 0. (8)

Equation (8) has been obtained from Eq. (7) and the condition for the sum of
the first harmonic components to be equal to zero.

For five cluster configuration (case (ii)) with respectively nI , nII , nIII , nIV and
nV pendulums in the successive cluster, exists when angles βII−V fulfill the relation:

nI + nII cosβII + nIII cos βIII + nIV cos βIV + nV cos βV = 0,

nII sinβII + nIII sinβIII + nIV sinβIV + nV sinβV = 0,

nI + nII cos 3βII + nIII cos 3βIII + nIV cos 3βIV + nV cos 3βV = 0,

nII sin 3βII + nIII sin 3βIII + nIV sin 3βIV + nV sin 3βV = 0. (9)

Equation (9) has been obtained from Eq. (7) and the condition for the sum of the
first and third harmonic components to be equal to zero.

In the linear approximation for the three clusters configuration the beam os-
cillates periodically as forced by the third harmonic component of Eq. (6) as the

∗) The exact formulas for the parameters A1, A3 and ρ can be found in any textbook on the

theory of linear oscillations, e.g., J J. Thomsen, Vibrations and Stability; Order and Chaos (McGraw

Hill, London, 1997).
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Fig. 3. Three metronomes located on the elastic plate which can roll on the base obtain a synchro-

nous state with a phase difference βII = 2π/3, βIII = 2π − βII .

first harmonic components vanishes. For five clusters configuration it stays in rest
as both the first and third harmonic components vanish. In numerical simulations
of Eq. (2) we observed additional small oscillations due to the higher dimensional
harmonics (omitted in the linear approximation) and discontinuous characteristic of
forcing given by escapement mechanism).

In Fig. 3 we show the simple experimental confirmation of the stability of sym-
metrical synchronization of n = 3 pendulums. Three metronomes located on the
elastic plate which can roll on the base obtain a synchronous state with a phase
difference βII = 2π/3, βIII = 2π − βII .

To summarize, we have studied the phenomenon of synchronization in the array
of the pendulum clocks hanging from an elastically fixed horizontal beam. We show
that besides the complete synchronization of all pendulums and creation of the pairs
of pendulums synchronized in anti-phase (for even n), the pendulums can be grouped
either in three of five clusters. Pendulums in the clusters perform complete synchro-
nization and the clusters are in the form of phase synchronization characterized by
a constant phase difference between the pendulums given by Eqs. (8) and (9). We
give evidence that the observed behavior is robust in the phase space and can be
observed in real experimental systems.
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